

Überblick über die Architektur
von Kubernetes

 Anatoli Kreyman

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

2

Einführung

Das Buch "Überblick über die Architektur von Kubernetes" ist ein umfassender
Leitfaden, der ein tiefes Verständnis der Architektur und Funktionsweise von
Kubernetes vermitteln soll.

Das vermittelte Wissen und ein Minimum an praktischer Erfahrung sind vollkommen
ausreichend, um die Kubernetes Basiszertifizierung (Kubernetes and Cloud Native
Associate) zu erlangen.

Bildnachweise:

Alle hier verwendeten Diagramme wurden von mir selbst erstellt und können von Ihnen
verwendet werden.

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

3

Inhaltsverzeichnis
Einführung ... 2

Was ist Kubernetes? ... 8

VM vs. Container oder OS Isolierung vs. Applikation Isolierung ... 8

Microservices... 8

Verwendungsszenarien ... 9

Einsatzszenarien .. 9

Kubernetes Vorteile ... 9

Flexibilität .. 9

Skalierbarkeit / Effizienz .. 9

Ausfallsicherheit .. 9

Deklarative Konfiguration .. 9

Self-Healing .. 10

Ökosystems .. 10

Kubernetes Nachteile ... 10

Kosten und Komplexität .. 10

Nicht immer sinnvoll .. 10

Kubernetes-Architektur Diagramm .. 11

Control Plane... 12

Kubernetes API-Server ... 12

ETCD .. 12

kube-controller-manager... 12

kube-scheduler .. 13

Worker Nodes ... 13

kubelet ... 13

Kube-proxy .. 13

IP-Tables-Modus .. 14

IPVS-Modus ... 14

Endpunkt-Modus ... 14

Container Runtime .. 14

API Server .. 15

RESTful API ... 15

kubectl api-resources .. 16

Authentifizierung, Autorisierung, Validierung und Zulassung ... 16

Authentifizierung ... 16

Autorisierung ... 18

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

4

Validierung ... 18

Zulassung ... 18

Informationsaustausch mit ETCD .. 18

Lesen von Daten .. 18

Schreiben von Daten ... 18

Beobachten von Änderungen .. 18

Skalierbarkeit, Erweiterbarkeit, Versionskontrolle .. 18

Skalierbarkeit ... 19

Erweiterbarkeit .. 19

Versionskontrolle ... 19

API Objects .. 19

API Groups ... 19

Core-API-Groups .. 20

Named API-Groups .. 20

API Resource Location – Beispiele ... 20

API Versioning .. 21

Alpha .. 21

Beta .. 21

Stable ... 21

HTTP-Antwortcodes vom API-Server ... 22

Namespaces .. 23

Isolierung ... 23

Ressourcenverwaltung .. 24

Zugriffssteuerung ... 24

Namenstrennung ... 25

Vordefinierten Namespaces .. 25

Labels... 25

Beispiel eines Kubernetes Labels: ... 26

Annotations ... 27

Beispiel einer Kubernetes Annotations: ... 28

Labels vs. Annotations ... 28

Workload-Objekte .. 29

ReplicaSet .. 29

Deployment .. 31

RollingUpdate – Parameter ... 32

kubectl Befehle für das Deployment ... 32

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

5

DaemonSet .. 33

StatefulSet ... 34

Headless Service .. 34

Jobs .. 35

CronJobs .. 36

Healthcheck-Objekte .. 36

Liveness Probe ... 36

Readiness Probe .. 37

Startup Probe .. 37

Taints und Tolerations ... 38

Taints und Tolerations - technische Umsetzung .. 38

Taint-Optionen ... 39

Typische Anwendungsfälle .. 40

NodeSelector... 41

Node Affinity ... 42

Pod Affinity / Pod Anti-Affinity... 44

Pod Affinity .. 44

Pod Anti-Affinity .. 46

Kubernetes Netzwerk ... 47

CNI-Plugin .. 47

Service-Discovery .. 47

Network-Policies .. 47

Pod-to-Pod-Kommunikation ... 47

Netzwerk-Arten im Kubernetes Cluster ... 47

Node Network ... 48

Pod Network / Cluster Network .. 48

Service Network .. 49

Kubernetes Ingress .. 50

Name-based Virtual Hosts ... 50

Path-based Routing ... 50

TLS Termination ... 50

Service API vs. Ingress ... 50

Open Source Ingress Controller ... 51

Ingress Beispiel .. 51

Kubernetes Egress ... 51

Ergress Beispiel .. 52

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

6

Kubernetes DNS (kube-dns) .. 52

Kubernetes CoreDNS ... 52

Kubernetes Netzwerk-Plugins / Container Networking Interface (CNI) .. 53

Service-Typen .. 53

ClusterIP .. 54

Beispiel ClusterIP ... 54

NodePort ... 55

Beispiel NodePort .. 55

LoadBalancer ... 56

ExternalIPs ... 56

Beispiel ExternalName ... 57

NodePort vs. ExternalIPs ... 57

ExternalName .. 58

Beispiel ExternalName ... 58

Kubernetes Storage ... 59

Volumes ... 59

Persistent Volume .. 60

Persistent Volume Claim .. 61

PVC-Beispiel ... 61

Access Modes .. 61

Static Provisioning ... 62

Dynamic Provisioning .. 62

Storage Class .. 62

Storage Lifecycle .. 62

Autoscaling .. 63

Was ist Skalierung? .. 63

Was ist Kubernetes Autoscaling? .. 63

Autoscaling-Funktionen für Kubernetes .. 64

Vertical Pod Autoscaler (VPA) .. 64

Horizontal Pod Autoscaler (HPA) ... 65

HPA Komponenten .. 65

HPA-Versionen ... 66

Cluster Autoscaler ... 66

Requests und Limits .. 67

Requests .. 67

Limits ... 67

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

7

Einheiten .. 68

CPU-Throttling ... 68

Out-Of-Memory (OOM) ... 69

Resource Quotas ... 70

Quality of Service (QoS) .. 71

Guaranteed .. 71

Burstable .. 71

BestEffort ... 71

Secrets ... 72

Arten von Secrets .. 72

Speicherung der Secrets .. 72

Secret Encryption Config ... 72

Verwendung von Secrets-Management-Tools ... 73

Base64 Sicherheitsbedenken... 73

KCNA – Prüfung ... 74

Inhalt der Zertifizierung (offizielle Information) .. 74

Kompetenzbereiche (offizielle Information).. 74

Prüfungsdetails .. 74

Hinweis / Disclaimer

Dieses kleine Buch ist während meiner persönlichen Vorbereitung auf die Kubernetes
and Cloud Native Associate (KCNA)-Prüfung entstanden. Es spiegelt meinen damaligen
Wissensstand und mein Verständnis von Kubernetes wider. Ich kann daher weder die
vollständige Korrektheit noch die Aktualität der Inhalte garantieren – insbesondere, da
sich Kubernetes und das Cloud-Native-Umfeld ständig weiterentwickeln.

Die bereitgestellten Informationen dienen ausschließlich zu Lern- und
Informationszwecken. Eine Haftung für eventuelle Fehler oder daraus entstehende
Konsequenzen wird ausgeschlossen.

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

8

Was ist Kubernetes?

Kubernetes ist eine marktführende Orchestrierungsplattform für die Bereitstellung, Skalierung
und Verwaltung von Containern in einem oder mehreren Clustern. Kubernetes (auch K8s
genannt) wurde als Open-Source-Technologie im Jahr 2014 von Google ins Leben gerufen und
wird von Cloud Native Computing Foundation weiter geführt. Inzwischen ist Kubernetes der
De-facto-Standard für die Container-Orchestrierung geworden. Kubernetes wird oft mit „K8S“
abgekürzt — zwischen dem „K“ und dem „S“ stehen 8 Buchstaben.

VM vs. Container oder OS Isolierung vs. Applikation Isolierung

Zunächst ein paar Worte zur Containerisierung. Im Vergleich zu einer klassischen Applikation,
die direkt auf einem Betriebssystem einer VM installiert wird, benötigen containerisierte
Applikationen kein sehr abgespecktes Betriebssystem (z.B. Windows Core) und enthalten alle
notwendigen Abhängigkeiten in einem Container selbst. Die Vorteile dieser Technologie sind:

• wesentlich weniger Hardware-Ressourcen werden benötigt (massive Kosten-
Ersparnisse, besonders in der Cloud interessant)

• ein Container startet viel schneller als jedes Betriebssystem
• die Sicherheit wird durch einen kleineren Footprint erhöht
• die Software-Versionierung wird vereinfacht
• eine Plattform-Unabhängigkeit wird gewährleistet
• ein Container ist oft eine Basis für die Microservices-Architektur

Microservices
Microservices ist ein Begriff aus der Softwareentwicklung. Vereinfacht gesagt bedeuten
Microservices nichts anderes als die Zerlegung einer großen (monolithischen) Anwendung in
kleine Einzelteile, die bestimmte Dienste/Geschäftsfunktionen abbilden können.

In den letzten Jahren hat die Microservices-Architektur an Popularität gewonnen. Dies ist
unter anderem auf die Verbreitung der Containerisierung zurückzuführen oder hat der Trend
zur Microservice-Architektur die Containerisierung vorangetrieben (darüber streiten sich die
Gelehrten). Wie jede Technologie hat auch die Microservice-Architektur Vor- und Nachteile.

https://kubernetes.io/de/
https://www.cncf.io/

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

9

Die gemeinsame Verwendung von Microservices und Kubernetes reduziert die möglichen
Nachteile beim Übergang zur Microservices-Architektur.

Verwendungsszenarien
Einsatzszenarien
Je nachdem, mit wem man über Kubernetes spricht, wird man zwei Meinungen hören. Der
Softwareentwickler sieht in dieser Technologie ein perfektes Werkzeug, um seine Produkte zu
testen und damit die Softwareentwicklung zu beschleunigen bzw. Releasezyklen zu verkürzen.
Aus Sicht des Managements können nun viele produktive Bereiche containerisiert und damit
der Weg vom Test in die Produktion beschleunigt werden. Die Liste der Vorteile scheint mir
also deutlich länger zu sein als die der Nachteile.

Kubernetes Vorteile
Flexibilität
Kubernetes passt perfekt zu einem weiteren Trend und ermöglicht eine „schmerzfreie“
Migration in der Cloud. Alle großen Cloud-Anbieter (nicht nur AWS, GCP, Azure) bieten
mittlerweile eine eigene Kubernetes-Infrastruktur an. Es ist auch möglich, mehrere Anbieter
miteinander oder mit einer lokalen Infrastruktur zu verbinden.

Skalierbarkeit / Effizienz
Kubernetes automatisiert die horizontale Skalierung (Scale out) durch Hinzufügen oder
Entfernen von Containern, basierend auf aktuellen Auslastungsindikatoren. Die automatische
vertikale Skalierung (Scale up) sorgt für eine effiziente Zuteilung der im Cluster verfügbaren
Hardwareressourcen. Die Verwendung von CI/CD- Pipeline (Continuous Integration /
Continuous Delivery) ist eine sinnvolle Ergänzung zu einer Kubernetes-Infrastruktur und trägt
zur Effizienz bei.

Ausfallsicherheit
Kubernetes beinhaltet einige Mechanismen, um die Hochverfügbarkeit sowohl für die
Infrastruktur selbst als auch für die darauf laufenden Applikationen zu gewährleisten. An
dieser Stelle ist anzumerken, dass die Applikation in der Lage sein muss, mit dem plötzlichen
Ausfall von Containern umzugehen. Es wird zwar automatisch ein neuer Container gestartet,
aber dessen Zustand bleibt nicht erhalten. Auch ein „VMotion“ von Containern ist nicht
vorgesehen – es wird immer ein neuer Container gestartet. Darüber hinaus überwacht
Kubernetes kontinuierlich den aktuellen Zustand des Clusters. Hinzu kommen ein effizientes
Traffic-Routing und Load Balancing.

Deklarative Konfiguration
Eine deklarative Beschreibung bzw. Konfiguration der Infrastruktur trägt ebenfalls zur
Stabilität der Kubernetes-Infrastruktur bei. Im Gegensatz zu einer imperativen Konfiguration,
die in Form von klaren Anweisungen agiert (wie z.B. Create instance A, Create instance B,
Create instance C), definiert eine deklarative Konfiguration lediglich die Anzahl der benötigten
Instanzen (z.B. Anzahl der laufenden Instanzen = 3). Diese Methode macht auch das Rollback
zu einer früheren Version sehr einfach. Kubernetes wird immer versuchen, den in der
deklarativen Beschreibung definierten Zustand herzustellen, aber es gibt keine Garantie, dass
dieser Zustand erreicht wird.

https://www.redhat.com/de/topics/devops/what-cicd-pipeline
https://www.vmware.com/de/products/vsphere/vmotion.html

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

10

Self-Healing
Die Selbstheilungsfähigkeit ist zweifellos eine der besten Eigenschaften von Kubernetes.
Wenn eine containerisierte Anwendung oder ein (im Container platzierter) Pod abstürzt,
startet Kubernetes die abgestürzten Komponenten neu (sofern genügend Ressourcen
verfügbar sind und die Anwendung den Ausfall „verkraften“ kann).

Ökosystems
Ein Vorteil einer populären Open-Source-Lösung ist ein breites Ökosystem (Security,
Monitoring-, Reporting- und Visualisierungs-Tools wie z.B. ElasticSearch + Kibana). Das hilft
die Nutzbarkeit des Produktes zu verbessern. Auch in diesem Fall würden die hilfreichen
Erweiterungen (wie z.B. Prometheus) in der Regel keine zusätzlichen Kosten verursachen.

Unter diesem Link finden Sie die aktuelle Landkarte der Projekte der Cloud Native Computing
Foundation: https://cncf.landscape2.io

Kubernetes Nachteile

Kosten und Komplexität
Die Umstellung auf Kubernetes kann teuer und umständlich sein. Selten kann man auf der
grünen Wiese beginnen. In den meisten Fällen muss die bestehende Software so angepasst
werden, dass sie problemlos auf Kubernetes läuft. Zunächst muss der finanzielle und zeitliche
Aufwand für die Anpassung der Software abgeschätzt werden. Hierfür werden Experten mit
fundierten K8s Kenntnissen sowie Softwareentwickler mit Erfahrung in der Entwicklung von
containerisierten Anwendungen benötigt.

Nicht immer sinnvoll
Nicht für jede bestehende monolithische Anwendung ist es wirtschaftlich und/oder technisch
sinnvoll, sie zu containerisieren. Auch die betrieblichen und organisatorischen Anpassungen
können für manche Unternehmen und IT-Abteilungen eine größere Herausforderung
darstellen.

https://www.elastic.co/de/
https://www.elastic.co/de/kibana
https://prometheus.io/
https://cncf.landscape2.io/

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

11

Kubernetes-Architektur Diagramm

Die Kubernetes-Architektur besteht im Groben aus zwei Schichten. Die erste Schicht könnte
man als eine physikalische Schicht bezeichnen. Auf dieser Ebene befinden sich zwei
Komponenten: ein oder mehrere Master Nodes sowie ein oder mehrere Worker Nodes.

Die weiteren Schichten sind zwei logische Abstraktionen:

• der Kubernetes Cluster selbst, welcher alle Komponenten
beinhaltet

• die Pods, in denen einer oder mehrere Container Instanzen
ausgeführt werden

Die Abbildung auf der rechten Seite verdeutlich die logische Gliederung
der Komponenten: Cluster beinhaltet Nodes, Nodes beinhalten Pods,
Pods beinhalten einzelnen Containers.

Configuration Maximums. Nicht mehr als ...
 110 Pods pro Node.
 5000 Nodes.
 150 000 Pods in einem Cluster.
 300 000 Containers in einem Cluster.

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

12

Control Plane

Der Control Node ist eine wichtige Komponente von Kubernetes und besteht aus mehreren
Bestandteilen, die eng miteinander interagieren, um den Kubernetes-Cluster zu steuern und
zu verwalten.

Hier sind die wichtigsten Komponenten des Control Plane Nodes:

• kube-apiserver
• etcd
• kube-controller-manager
• kube-scheduler

Kubernetes API-Server

Der API-Server ist eine Komponente von Kubernetes, die es ermöglicht, den Cluster zentral zu
verwalten und zu steuern. Durch die Verwendung der API können Entwickler und
Administratoren Kubernetes-Anwendungen erstellen, die auf die Ressourcen des Clusters
zugreifen und diese verwalten können.

Der Kubernetes-API-Server ist das primäre Gateway für die Interaktion mit dem Kubernetes-
Cluster. Er bietet eine RESTful-API-Schnittstelle für die Verwaltung der Kubernetes-Ressourcen
und ist für die Authentifizierung und Autorisierung von Benutzeranfragen verantwortlich.

ETCD

Kubernetes etcd wird verwendet, um Konfigurationsdaten und Informationen über den
Zustand des Clusters, sowie über die Kubernetes-Ressourcen zu speichern und zu verwalten.

etcd ist eine zuverlässige, verteilte Datenbank, die von CoreOS entwickelt wurde und auf
einfachen Schlüssel-Wert-Paaren basiert. Zwecks Hochverfügbarkeit und Skalierbarkeit kann
etcd auf mehreren (auch separaten) Cluster Knoten ausgeführt werden.

etcd interagiert eng mit anderen Komponenten in der Architektur von Kubernetes. Der API
Server greift auf etcd zu, um Informationen über Kubernetes-Ressourcen zu speichern und
abzurufen. Der Kubernetes-Controller-Manager verwendet etcd, um Informationen über den
Cluster-Status zu überwachen und automatisch den Zustand des Clusters anzupassen.

kube-controller-manager

Der Kubernetes kube-controller-manager ist eine Komponente von Kubernetes, die für die
Überwachung und Verwaltung von Controller-Objekten im Cluster und die Durchsetzung des
gewünschten Zustands (Desired State) verantwortlich ist. Der kube-controller-manager
verwendet verschiedene Controller-Algorithmen, um Controller-Objekte zu verwalten. Zu
diesen Algorithmen gehören der Replication-Controller, der Deployment-Controller, der
StatefulSet-Controller und der DaemonSet-Controller.

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

13

kube-scheduler

Der Kubernetes kube-scheduler ist eine Architekturkomponente, die für die Zuweisung von
Pods zu Nodes im Cluster verantwortlich ist. Der Scheduler wählt den geeigneten Node aus,
auf dem ein Pod ausgeführt werden soll, basierend auf verschiedenen Faktoren wie den
Ressourcenanforderungen des Pods, der Verfügbarkeit von Nodes und den spezifischen
Anforderungen der Anwendungen. Der kube-scheduler verwendet einen Algorithmus, um den
am besten geeigneten Knoten für die Ausführung des Pods zu finden. Der Algorithmus ist
anpassbar und kann durch benutzerdefinierte Filter und Prioritäten erweitert werden.

Worker Nodes

Worker Nodes dienen der Ausführung von Pods. Ein Worker Node ist ein physischer oder
virtueller Computer, auf dem eine Container-Laufzeitumgebung (z.B. containerd) ausgeführt
wird. Ein Kubernetes-Cluster kann aus Hunderten oder Tausenden von Worker Nodes
bestehen, je nach Größe des Clusters.

Ein Worker Node beinhaltet drei folgende Komponenten:

• kubelet
• kube-proxy
• Container Runtime

kubelet

Kubelet ist eine Komponente der Worker Node Architektur, die für die Verwaltung der Pods
auf einem Worker Node im Cluster verantwortlich ist. Das Kubelet ist ein Agent, der auf jedem
Node (kann auch auf den Control Nodes ausgeführt werden) in einem Kubernetes-Cluster
läuft. Er ist verantwortlich für das Starten, Überwachen und Stoppen von Pods, basierend auf
den Pod-Spezifikationen, die er vom Kubernetes API Server erhält.

Der Kubelet überwacht auch die Ressourcennutzung auf dem Node und stellt sicher, dass
genügend Ressourcen für die laufenden Pods zur Verfügung stehen.

In Bezug auf das Netzwerk stellt er sicher, dass der Netzwerkstatus eines Pods korrekt
gemeldet wird und dass der Pod die notwendigen Netzwerkressourcen erhält. Der Rest wird
vom Kube-Proxy erledigt.

Kube-proxy

kube-proxy ist für das Routing des Netzwerkverkehrs innerhalb des Clusters zuständig. kube-
proxy ermöglicht, dass die Anwendungen und Dienste innerhalb des Clusters über ihre
Netzwerkadressen erreichbar sind, unabhängig davon, auf welchem Node sie ausgeführt
werden.

kube-proxy verwendet verschiedene Modi, um den Netzwerkverkehr innerhalb des Clusters
zu steuern. Die wichtigsten Funktionen und Eigenschaften sind hier kurz zusammengefasst:

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

14

IP-Tables-Modus

kube-proxy kann im IP-Tables-Modus betrieben werden, wobei das IP-Tables-Tool zur
Definition und Verwaltung von Netzwerkregeln verwendet wird. Diese Regeln leiten den
Datenverkehr je nach Konfiguration an die entsprechenden Pods weiter oder blockieren ihn.

IPVS-Modus

Im IPVS-Modus verwendet kube-proxy das IPVS-Modul (IP Virtual Server), das für
fortschrittliches Load Balancing. IPVS bietet im Vergleich zum IP-Tables-Modus eine
verbesserte Performance und Skalierbarkeit, insbesondere in großen und komplexen
Clustern.

iptables-Modus

Im iptables-Modus programmiert Kube-Proxy iptables-Regeln auf jedem Node, um den
Netzwerkverkehr von Services zu den zugehörigen Endpunkten (Pods) weiterzuleiten. Dabei
werden die von Kubernetes verwalteten Endpoints bzw. Endpoint Slices verwendet, um
eingehende Service-Anfragen per NAT an die passenden Pod-IP-Adressen zu verteilen.

Container Runtime

Die Container Runtime ist die dritte Komponente des Kubernetes Worker Nodes und ist für
das Starten, Stoppen und Überwachen von Containern auf einem Worker Node
verantwortlich. Sie stellt sicher, dass die Container gemäß den Spezifikationen der
Kubernetes-Objekte (wie z.B. Pods) ausgeführt werden. Die zweite Aufgabe Container-Images
aus einer Registry herunterladen und lokal bereitstellen.

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

15

API Server

Wie bereits erwähnt, ist der API-Server eine Komponente des Control Plane, der als zentrale
Steuereinheit zwischen den verschiedenen Komponenten des Clusters und den
Benutzern/Administratoren fungiert. Die Konfiguration und Steuerung des Kubernetes-
Clusters ist nur über den API-Server möglich. Der Kubernetes API Server ist ein typisches
Beispiel für eine Client-Server-Architektur.

Der API-Server selbst ist ein einzelner, in der Programmiersprache Go geschriebener Prozess.
Der API-Server stellt eine RESTful API bereit, die für Authentifizierung, Autorisierung,
Validierung, Zulassung, Ressourcenspeicherung, Informationsabruf sowie CRUD-Operationen
(Create, Read, Update, Delete) verantwortlich ist.

Hier sind die Kernfunktionen der RESTful im erweiterten Überblick:

RESTful API

Im Allgemeinen ist eine RESTful API (Representational State Transfer) eine
Softwarearchitektur, die es Systemen ermöglicht, über das Internet/Intranet per http
miteinander zu kommunizieren und Ressourcen auszutauschen.

RESTful APIs basieren auf dem Konzept von Ressourcen. Eine Ressource ist ein Objekt (oft als
Entität bezeichnet), auf das über eine eindeutige URL zugegriffen werden kann.

Der Client kann eine Anwendung, ein Skript oder ein System sein, das die API-Anfragen sendet.
Der Kubernetes API-Server verarbeitet diese Anfragen. Dabei ist die RESTful API zustandslos,
das bedeutet, dass keine Informationen über vorherige Anfragen speichert werden.

In einem Kubernetes-Cluster gibt es viele verschiedene Arten von Ressourcen, wie z.B. Pods,
Deployments, Services und ConfigMaps. Jede dieser Ressourcen hat ihre eigene spezielle URL,
über die man sie in der API aufrufen kann.

https://de.wikipedia.org/wiki/Representational_State_Transfer

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

16

Die häufigsten http-Methoden in Kubernetes sind (die kursiv markierten Methoden gelten als
speziell):

• GET - eine Ressource abrufen oder Informationen darüber erhalten
• POST - eine neue Ressource erstellen
• PUT - eine vorhandene Ressource aktualisieren oder ersetzen
• DELETE - eine vorhandene Ressource löschen
• PATCH - die angegebenen Felder einer Ressource ändern

Zusätzlich gibt es Kubernetes-spezifische Subresources/Operationen wie:

• LOG - abrufen von Protokollen aus einem Container in einem Pod
• EXEC - ausführen eines Befehls in einem Container und Abrufen der Ausgabe
• WATCH - Änderungsbenachrichtigungen für eine Ressource mit Streaming-

Ausgabe

kubectl api-resources
kubectl api-resources - zeigt die Ressourcen zusammen mit ihren Kurznamen, API-Gruppen
und ob sie in einem bestimmten Namespace verfügbar oder clusterweit verfügbar sind.

Authentifizierung, Autorisierung, Validierung und Zulassung

Authentifizierung
Der API-Server ist verantwortlich für die Authentifizierung von Benutzern und Komponenten,
die auf den Kubernetes Cluster zugreifen möchten. Der API-Server stellt sicher, dass nur
authentifizierte Benutzer und Komponenten auf die Ressourcen zugreifen dürfen.

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

17

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

18

Autorisierung

Nach der Authentifizierung eines Benutzers oder einer Komponente prüft der API-Server, ob
diese berechtigt sind, die angeforderte Aktion auf der angegebenen Ressource auszuführen.
Der API-Server kann sowohl Role-Based Access Control (RBAC) als auch Attribute-Based Access
Control (ABAC) verwenden, wobei RBAC die empfohlene und standardmäßige Methode ist.

Validierung

Der API-Server validiert eingehende API-Anfragen, nachdem diese authentifiziert und
autorisiert wurden. Der API-Server prüft, ob die Daten in der Anfrage korrekt formatiert sind
und alle erforderlichen Felder enthalten. Wenn die Anfrage die Validierung nicht besteht, wird
sie zurückgewiesen und der Client erhält eine Fehlermeldung.

Zulassung

Nachdem eine Anfrage die Validierung bestanden hat, durchläuft er den Zulassungsprozess.
Der API-Server kann auch zusätzliche Prüfungen durchführen und eventuell Anpassungen
vornehmen, z.B. sind an dieser Stelle die "Admission Webhooks"
(ValidatingAdmissionWebhook, MutatingAdmissionWebhook) integriert.

Anschließend werden die Anfragen, die authentifiziert, autorisiert, validiert und zugelassen
wurden, die Ressourcen und ihr Status in der ETCD gespeichert.

Informationsaustausch mit ETCD

Die Kommunikation mit der Datenbank (ETCD) gehört ebenfalls zu der Kernaufgaben der API-
Server. In diesem Fall ist der API-Server für diese Aufgaben verantwortlich: Lesen von Daten,
Schreiben von Daten und Beobachten von Änderungen.

Lesen von Daten
Wenn eine Komponente (oder ein Benutzer über kubectl) den Zustand einer Ressource
abfragen möchte, sendet sie eine Anfrage an den API-Server. Der API-Server liest dann die
entsprechenden Daten aus ETCD und sendet sie an den Anfragenden zurück.

Schreiben von Daten
Wenn eine Komponente den Zustand einer Ressource ändern möchte, sendet sie eine Anfrage
an den API-Server. Der API-Server validiert die Anfrage und schreibt die Änderungen in der
ETCD.

Beobachten von Änderungen
Viele Komponenten in Kubernetes müssen auf Änderungen an bestimmten Ressourcen
reagieren. Dies passiert, indem sie den API-Server auffordern, sie über Änderungen zu
informieren. Der API Server hält eine Verbindung zu ETCD und wird über Änderungen
informiert, die er danach an die beobachtenden Komponenten weiterleitet

Skalierbarkeit, Erweiterbarkeit, Versionskontrolle
Skalierbarkeit, Erweiterbarkeit und Versionskontrolle sind weitere Eigenschaften des API-
Servers.

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

19

Skalierbarkeit
Die Architektur des API-Servers ermöglicht eine horizontale Skalierung, um sowohl die
Leistung als auch die Verfügbarkeit zu erhöhen.

Erweiterbarkeit
Der API-Server ist erweiterbar und kann mit zusätzlichen Funktionen ausgestattet werden,
ohne dass der Kern des API-Servers verändert werden muss. Die wohl bekannteste
Möglichkeit ist die Verwendung von Custom Resource Definitions (CRDs). Die CRDs bieten die
Möglichkeit, neue Ressourcentypen zu definieren, die der API-Server verstehen kann. Weitere
Methoden sind Aggregated APIs, Admission Controllers, API Extensions und Webhooks.

Versionskontrolle
Der API-Server unterstützt die Versionskontrolle für die APIs, und ermöglicht damit die
Abwärtskompatibilität. Mehr dazu unten im Abschnitt: API Groups

API Objects

Die API-Objekte sind die grundlegenden Einheiten (in der offiziellen Dokumentation als
Persistent Entities bezeichnet), mit denen Kubernetes interagiert und die den Zustand des
Kubernetes-Clusters repräsentieren.

Die API Objekte:

• repräsentieren und definieren den Zustand des Kubernetes-Clusters
• stellen alles dar, was in einem Kubernetes-Cluster existiert
• dienen als Basis, um den aktuellen Zustand mit dem gewünschten Zustand zu

vergleichen
• dienen als Schnittstelle zwischen dem Benutzer und dem Kubernetes-System
• werden im YAML- oder JSON-Format beschrieben
• können über die Kubernetes API oder über kubectl erstellt, aktualisiert und

gelöscht werden

Kubernetes API-Objekte sind auf drei Arten organisiert: Kind, API-Group und API-Version

Pod DaemonSet PersistentVolume Node
Service Job PersistentVolumeClaim Role
Deployment CronJob StorageClass ClusterRole
ReplicaSet ConfigMap Ingress RoleBinding
StatefulSet Secret Namespace ClusterRoleBinding

API Groups

API-Gruppen ermöglichen eine bessere Organisation von Ressourcen in der Kubernetes-API,
d.h. eine logische Strukturierung und Trennung voneinander.

Es gibt zwei Organisationsmethoden für API-Gruppen in Kubernetes: Core API-Gruppen und
Named API-Gruppen.

https://kubernetes.io/docs/concepts/overview/working-with-objects/
https://kubernetes.io/docs/concepts/overview/working-with-objects/

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

20

Core-API-Groups
Die erste ist die Core API Group oder Legacy API Group. Diese Gruppe enthält Objekte, die
zum Aufbau der grundlegendsten Ressourcen (wie Pods, Services und Nodes) verwendet
werden. Als Kubernetes entwickelt wurde, gab es noch kein Konzept für API-Gruppen.

Named API-Groups
Mit der Weiterentwicklung von Kubernetes wuchs die Notwendigkeit, die neuen Objekte zu
klassifizieren. So entstanden die „Named API Groups“. Ein typisches Beispiel für eine Named
API Group finden Sie in der folgenden Tabelle. Sie werden auch feststellen, dass bei den
neueren Named API Groups der Name der API Group auch Teil des URL Pfades wird.

API-Gruppe API-Objekte

Core-API (v1)
Pod, Service, Volume, Namespace, Node, Event, Secret,
ConfigMap, PersistentVolume, PersistentVolumeClaim

Named-API-Groups:
apps Deployment, DaemonSet, ReplicaSet, StatefulSet

batch Job, CronJob

extensions Ingress

rbac.authorization.k8s.io Role, RoleBinding, ClusterRole, ClusterRoleBinding

admissionregistration.k8s.io
MutatingWebhookConfiguration,
ValidatingWebhookConfiguration

apiextensions.k8s.io CustomResourceDefinition

networking.k8s.io NetworkPolicy

storage.k8s.io StorageClass, VolumeAttachment
Um die API-Gruppen und ihre Versionen zu verwenden, müssen Sie den vollständigen Pfad
einer API-Ressource angeben. Der Pfad setzt sich aus der API-Gruppe, der Version und der
Ressource selbst zusammen. Zum Beispiel: /apis/apps/v1/deployments

Weitere Information: https://kubernetes.io/docs/reference/kubernetes-api/

API Resource Location – Beispiele

Beispiele für URL-Pfade für Ressourcen in der Kubernetes-API:

Core API - URLs

• Pod: http://apiserver:port/api/v1/namespaces/{namespace}/pods/{pod-name}
• Service: http://apiserver:port/api/v1/namespaces/{namespace}/services/{service-name}
• Volume: http://apiserver:port/api/v1/persistentvolumes/{volume-name}

Named API Groups - URLs

• Deployment
o Gruppe "apps"
o http://apiserver:port/apis/apps/v1/namespaces/{namespace}/deployments/{deploy

ment-name}
• NetworkPolicy

https://kubernetes.io/docs/reference/kubernetes-api/
http://apiserver:port/api/v1/persistentvolumes/%7bvolume-name%7d

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

21

o Gruppe "networking.k8s.io"
o http://apiserver:port/apis/networking.k8s.io/v1/namespaces/{namespace}/network

policies/{networkpolicy-name}
• Role

o Gruppe "rbac.authorization.k8s.io"
o http://apiserver:port/apis/rbac.authorization.k8s.io/v1/namespaces/{namespace}/ro

les/{role-name}
Beschreibung:

{namespace} steht für den Namen des Namespaces
{pod-name}, {service-name}, {volume-name}, {deployment-name}, {networkpolicy-name}
und {role-name} stehen für die Namen der Ressourcen

API Versioning

Die Kubernetes-API unterstützt verschiedene API-Versionen. Mehrere Versionen der
Kubernetes-API können gleichzeitig auf einem Server vorhanden sein. Die API-Versionierung
ermöglicht sowohl Abwärts- als auch Aufwärtskompatibilität, d.h. wir können die API-Version
des Objekts, mit dem wir arbeiten wollen, in unserem YAML-Manifest angeben.

Während der Entwicklung durchläuft die API-Version drei Phasen des Entwicklungsprozesses:
Alpha (V1alpha1) > Beta (V1beta1) > Stable (v1):

Alpha
Die Alpha-Version (experimental) ist die erste Entwicklungsstufe und enthält neue
Funktionen, die sich noch in der Entwicklung befinden. Diese Funktionen können noch
fehlerhaft sein und werden im Laufe der Zeit geändert oder entfernt.

Beta
Die Beta-Version (pre release) ist die zweite und stabilere Entwicklungsstufe als die Alpha-
Version. In der Beta-Version wurden die Funktionen bereits getestet und verbessert.
Änderungen an den Funktionen sind noch möglich.

Stable
Die stabile Version (General Availability (GA)) ist die letzte Entwicklungsstufe und enthält
ausführlich getestete Funktionen. In dieser Version gibt es in der Regel keine Änderungen
mehr, sondern nur noch Fehlerbehebungen oder Sicherheitsupdates.

Die API-Versionen werden in der YAML-Konfigurationsdatei für Ressourcen und Workloads
angegeben. Wenn eine Funktion als Alpha oder Beta gekennzeichnet ist, sollte sie
verständlicherweise nur zu Entwicklungs- oder Testzwecken verwendet werden.

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

22

HTTP-Antwortcodes vom API-Server

HTTP-Statuscode Bedeutung

200 OK
Die Anfrage war erfolgreich. Die Antwort des Servers enthält die
angeforderten Daten.

201 Created Die Anfrage war erfolgreich. Eine neue Ressource wurde erstellt.

202 Accepted
Die Anfrage wurde akzeptiert und wird verarbeitet. Die Verarbeitung ist
noch nicht abgeschlossen.

204 No Content Die Anfrage war erfolgreich. Kein Inhalt vom Server zurückgegeben.

400 Bad Request
Die Anfrage konnte aufgrund einer ungültigen Syntax nicht verstanden
werden.

401 Unauthorized Die Anfrage erfordert eine Benutzerauthentifizierung.

403 Forbidden
Der Server hat die Anfrage verstanden. Er weigert sich jedoch,
sie auszuführen.

404 Not Found Die angeforderte Ressource wurde auf dem Server nicht gefunden.

409 Conflict
Anfrage konnte aufgrund eines Konflikts mit dem aktuellen
Ressourcenstatus nicht abgeschlossen werden.

500 Internal Server
Error

Ein allgemeiner Fehler ist aufgetreten.

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

23

Namespaces

Namespaces sind sicherlich die wichtigste Methode, um Objekte in einem Kubernetes-Cluster in
logische Einheiten zu organisieren. Die Verwendung von Namespaces ermöglicht die Aufteilung eines
physischen Clusters in mehrere virtuelle Cluster. (Kubernetes-Namespaces hat nichts mit dem Konzept
des Namespace des Linux-Betriebssystems zu tun)

Die Einsatzszenarien von Namespaces lassen sich grob in vier Bereiche unterteilen:

• Isolierung
• Ressourcenverwaltung
• Zugriffssteuerung
• Namenstrennung

Isolierung

Die Isolierung ist wahrscheinlich der Hauptgrund für die Verwendung von Namespaces in
einem Kubernetes-Cluster. Die Isolierung bezieht sich sowohl auf die Sichtbarkeit als auch auf
die Ressourcennutzung.

Alle in einem Namespace vorhandenen Ressourcen sind standardmäßig* nur innerhalb dieses
Namespace sichtbar. Das bedeutet, dass z.B. Pods, Services, Volumes und andere Ressourcen,
die in einem Namespace erstellt wurden, nicht direkt von einem anderen Namespace aus
sichtbar oder zugänglich sind.

* Es gibt eine Reihe von Möglichkeiten, die Sichtbarkeit von Ressourcen zwischen Namespaces
zu implementieren: Ingress Controller, Service Mesh, RBAC, Kubernetes Network Policies,
Cluster-Scope Ressourcen. Nicht alle diese Tools und Konzepte haben direkt mit der
"Sichtbarkeit" von Ressourcen zu tun haben, sondern eher mit Zugriffskontrolle, Routing und
Kommunikation.

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

24

Ressourcenverwaltung

Aus technischer Sicht können Namespaces verwendet werden, um Ressourcenquoten zu
definieren, die in einem Namespace verbraucht werden können. Durch die Verwendung von
Namespace-basierten Ressourcenquoten kann verhindert werden, dass eine Anwendung alle
Ressourcen des Clusters für sich beansprucht und dadurch andere Anwendungen
beeinträchtigt.

Es gibt eine Vielzahl von Ressourcen, deren Verbrauch begrenzt werden kann. Hier sind
einige Beispiele:

Ressourcenart
Begrenzt die < ... > die in einem Namespace erstellt

oder beansprucht werden können.
pods Gesamtzahl der Pods

services Gesamtzahl der Services

persistentvolumeclaims Gesamtzahl der PersistentVolumeClaims

secrets Gesamtzahl der Secrets.
configmaps Gesamtzahl der ConfigMaps

requests.cpu Gesamtmenge an CPU-Zeit

requests.memory Gesamtmenge an Speicher

limits.cpu maximale Menge an CPU-Zeit

limits.memory maximale Menge an Speicher

requests.ephemeral-
storage

 Gesamtmenge an temporärem Speicherplatz

limits.ephemeral-storage maximale Menge an temporärem Speicherplatz

Für die technische Umsetzung ist der Kubernetes-Objekttyp (Kind) „ResourceQuota“
zuständig. Hier ist ein Beispiel wie die Anzahl der Pods in einem Namespace begrenzt wird:

apiVersion: v1

kind: ResourceQuota

metadata:

 name: pod-quota

 namespace: mein-namespace

spec:

 hard:

 pods: "15"

Zugriffssteuerung

Die Namespaces übernehmen die Rolle der Sicherheitsgrenze für die rollenbasierte
Zugriffskontrolle. Wir können auf der Basis von Namespaces einschränken, wer auf welche
Ressourcen innerhalb eines Clusters zugreifen darf. Eine Ressource kann unter demselben
Namen in mehreren Namespaces existieren. (RBAC kann sowohl auf Namespace-Ebene als
auch auf Cluster-Ebene angewendet werden.)

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

25

Namenstrennung

Die Namespaces können auch als eine Benennungsgrenze verwendet werden, wobei die
Namen der Ressourcen nur innerhalb eines Namespace, nicht aber im gesamten Cluster
eindeutig sein müssen.

Vordefinierten Namespaces

Nach der Installation eines neuen Kubernetes-Clusters stehen die folgenden vordefinierten
Namespaces zur Verfügung:

Namespace Beschreibung

 default
 Dies ist der Standard-Namespace, in dem Objekte erstellt werden,
wenn kein anderer Namespace angegeben ist.

 kube-system
 Dieser Namespace ist für Objekte reserviert, die vom Kubernetes-
System selbst erstellt werden.

 kube-public
 Dieser Namespace ist für Ressourcen vorgesehen, die für alle Benutzer
öffentlich sichtbar und lesbar sein sollen.

 kube-node-lease
 Dieser Namespace enthält Lease-Objekte, die mit jedem Knoten
verbunden sind.

Labels

Die zweite Methode, um Objekte / Ressourcen im Kubernetes-Cluster zu organisieren und zu
kennzeichnen, wird als „Labels“ bezeichnet. Kubernetes Objekte/Ressourcen werden mit
Labels versehen, um sie später leichter finden und auswählen zu können. Fast alle erstellbaren
Ressourcen (Pods, Services, Volumes, Nodes, ReplicaSets, Deployments, StatefulSets usw.)
können mit Labels versehen werden.

Im Großen und Ganzen werden die Labels in drei Szenarien verwendet:

• Auswahl und Gruppierung. Man könnte bestimmte Ressourcen anhand ihrer
Labels auswählen und gruppieren.

• Service Discovery. Man könnte z.B. einen Service so konfigurieren, dass er nur
die Pods verwendet, die entsprechend gelabelt sind.

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

26

• ReplicaSets und Deployments. In diesem Use Case werden nur die Pods von
ReplicaSets / Deployments verwendet, die ein bestimmtes Label tragen.

Aus technischer Sicht sind die Labels Schlüssel-Wert-Paare (Key-Value Pair (KVP)). Die
Schlüssel-Wert-Paare sind mit einer bestimmten Ressource in einem Cluster verknüpft
(gelabelt).

• Der Schlüssel (key): der Schlüssel ist eine eindeutige Bezeichnung des Labels.
• Der Wert, der durch den Schlüssel repräsentiert wird.

Beispiel eines Schlüssel-Wert-Paares:

o app=meineSuperApp
o "app" ist der Schlüssel
o "meineSuperApp" ist der Wert.

Die Schlüssel-Wert-Paare können nicht beliebig benannt werden und unterliegen bestimmten
Regeln. In Kubernetes dürfen die Schlüssel für Labels maximal 63 Zeichen lang sein und die
Werte dürfen bis zu 253 Zeichen lang sein und dürfen die nur Buchstaben, Ziffern, Bindestriche
und Unterstriche enthalten. Weitere Einzelheiten sind hier zu finden.

Beispiel eines Kubernetes Labels:

Im folgenden Beispiel wird ein Deployment (kind: Deployment) mit dem Namen "mein-test-
deployment" erstellt.

Der selector im Abschnitt spec definiert, welche Pods von dem Deployment verwaltet werden.
Der matchLabels definiert, dass das Deployment alle Pods auswählt, die das Label "app=v1"
(blau markiert) haben.

Die labels innerhalb der template Spezifikation definieren die Labels, die an diese Pods
angehängt werden. Die Labels "app=v1" (grün markiert) werden auf jedem Pod gesetzt, der
auf der Grundlage dieser YAML-Datei erstellt werden.

Die Werte im selector (matchLabels: app: v1) sollen mit den Werten in
den labels übereinstimmen bzw. miteinander gematcht sein.

apiVersion: apps/v1

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

27

kind: Deployment

metadata:

 name: mein-test-deployment

spec:

 replicas: 3

 selector:

 matchLabels:

 app: v1

 template:

 metadata:

 labels:

 app: v1

 spec:

 containers:

 - name: mein-supercontainer

 image: app-image

In der Service-Datei (kind: Service) dient der selector dazu, die Pods auszuwählen, an die der
Service den Netzwerkverkehr weiterleitet soll. In diesem Fall sollte der „selector: app:
v1“ mit den „labels: app: v1“ aus der Deployment-YAML gematcht werden.

apiVersion: v1

kind: Service

metadata:

 name: mein-service

spec:

 selector:

 app: v1

 ports:

 - protocol: TCP

 port: 80

 targetPort: 8080

 type: ClusterIP

Annotations

Annotations ist die dritte Methode, um Objekte in Kubernetes zu organisieren. Annotations
werden in der Regel von Benutzern verwendet, um Entscheidungen darüber zu treffen, was
mit einer bestimmten Ressource auf der Grundlage der Annotationen geschehen soll. In den
Regeln sind diese Informationen für die Verwaltung von Objekten durch Kubernetes nicht
relevant, aber für bestimmte Werkzeuge (z.B. Build-, Release- oder Image-Informationen)
können sie nützlich sein.

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

28

Die Verwendung von Annotations kann die Integration externer Datenquellen überflüssig
machen, da alle notwendigen Daten bereits an die Ressource angehängt sind und sich
innerhalb des Clusters befinden. Jeder Ressourcentyp in Kubernetes kann mit einer
Annotation versehen werden.

Aus technischen Sicht sind die Annotations ebenfalls Schlüssel-Wert-Paare, die in der
Sektion Metadaten beschrieben werden. Die Schlüssel von Annotations können bis zu 63
Zeichen lang sein, ähnlich wie bei Labels. Eine Annotation kann aber bis zu 256 KB lang sein
und somit wesentlich mehr Informationen enthalten.

Beispiel einer Kubernetes Annotations:

So können die Annotations in einer YAML-Datei aussehen:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: mydeployment

 annotations:

 last-checked: "2023-05-23T18:25:43.511Z"

 git-commit: "d4f0f834c0743264f0435f62f13c5e1e2899fb2"

 owner: Anatoli

 repository: "https://github.com/kubernetes/"

spec:

 replicas: 3

 selector:

 matchLabels:

 app: mein-super-app

 template:

 metadata:

 labels:

 app: mein-super-app

 spec:

 containers:

 - name: mein-container

 image: mein-image

Labels vs. Annotations

Der Hauptunterschied zwischen Labels und Annotations liegt in ihrer Verwendung. Labels
dienen der Identifizierung und Organisation von Kubernetes-Objekten und werden von
Kubernetes selbst zur Verwaltung von Objekten verwendet. Annotations enthalten
Informationen, die für die Verwaltung von Objekten durch Kubernetes nicht zwingend
erforderlich sind, die aber für Entwickler, Operatoren und Tools nützlich sein können.

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

29

Workload-Objekte

Workload- und Ressourcenobjekte sind wichtige Bestandteile der Kubernetes-Architektur.
Diese Objekte beschreiben, wie ein Container oder eine Gruppe von Containern in Kubernetes
bereitgestellt und ausgeführt wird. Oft werden die Begriffe „Kubernetes Workload Objekte“
und „Kubernetes Controller“ als absolute Synonyme verwendet, obwohl dies nicht ganz
korrekt ist.

Workload-Objekte sind API-Objekte für die Bereitstellung und Verwaltung von Anwendungen
und Services in Kubernetes. Ein Workload-Objekt definiert einen bestimmten gewünschten
Zustand und Kubernetes sorgt dafür, dass dieser Zustand aufrechterhalten wird.

Die Controller überwachen den aktuellen Zustand des Clusters und nehmen gegebenenfalls
Änderungen vor, um den Cluster in den gewünschten Zustand (Desired State) zu bringen.

ReplicaSet

Ein ReplicaSet (auch ReplicaSet Controller genannt) sorgt für die Ausführung einer
bestimmten Anzahl von Pods (Repliken eines Pods) in einem Cluster.

Die Begriffe ReplicaSet und ReplicaSet Controller werden oft synonym verwendet. Technisch
gesehen handelt es sich um unterschiedliche Konzepte:

• Ein ReplicaSet ist ein Kubernetes-Objekt (YAML-Manifest). Es definiert, wie viele
Kopien eines bestimmten Pods ausgeführt werden sollen.

• Der ReplicaSet Controller ist der Teil der Kubernetes-Kontrollebene, der dafür
verantwortlich ist, dass die gewünschte Anzahl von Pods eines ReplicaSets erhalten
bleibt.

Die Aufgabe des ReplicaSet Controllers ist es, zu erkennen, dass z.B. ein Pod (aus welchem
Grund auch immer) beendet wurde und der Cluster vom gewünschten Zustand abweicht. In
diesem Fall sollte der ReplicaSet Controller den fehlgeschlagenen Pod löschen und einen
Create Request an den API Server senden, um einen neuen Pod im Cluster zu erzeugen und so
den gewünschten Zustand wiederherzustellen.

In den seltensten Fällen werden ReplicaSets direkt erstellt. In der Regel werden sie durch
Deployments erzeugt.

Die erforderlichen Elemente eines ReplicaSets sind:

• Pod Template

• Replicas

• Selector

Beispiel für eine ReplicaSet-Konfiguration:

apiVersion: apps/v1

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

30

kind: ReplicaSet

metadata:

 name: mein-replicaset

spec:

 replicas: 3

 selector:

 matchLabels:

 app: mein-app

 matchExpressions:

 - {key: tier, operator: In, values: [frontend]}

 template:

 metadata:

 labels:

 app: mein-app

 tier: frontend

 spec:

 containers:

 - name: mein-super-container

 image: mein-image

Erklärung:

• replicas - Anzahl der gleichzeitig laufenden Pods.
• selector - enthält die matchLabels und/oder matchExpressions

o matchLabels - ist ein Schlüssel-Wert-Selektor . Alle von diesem ReplicaSet
verwalteten Pods haben das Label app und den Wert mein-app.

o matchExpressions - können zusätzlich oder anstelle von matchLabels verwendet
werden und ermöglichen eine komplexere Logik bei der Auswahl von Pods.

• template - hier werden die Eigenschaften der Pods definiert.

Die matchExpressions-Komponente besteht immer aus drei Teilen: key, operator und values.

• key: Name des Labels, für das die Bedingung gilt.
• operator: Der Operator, der die Bedingung definiert. Die gültigen Operatoren

sind: In, NotIn, Exists und DoesNotExist
• values: Ist eine Liste von Werten, die mit dem Label (key) verglichen werden. Dies ist nur für

die Operatoren In und NotIn relevant
o In - Dieser Operator überprüft, ob der gegebene Key in der Liste der angegebenen

Werte enthalten ist.
o NotIn - Dieser Operator ist das Gegenteil von In und überprüft, ob der gegebene

Key nicht in der Liste der Werte enthalten ist.
o Exists - überprüft, ob ein bestimmtes Label unabhängig von seinem Wert vorhanden

ist.
o DoesNotExist - Dies ist das Gegenteil von Exists

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

31

Deployment

Wie bereits erwähnt, basieren Deployments auf ReplicaSets. Deployments ermöglichen die
Aktualisierung oder Änderung von Anwendungen durch die Verwaltung der zugrunde
liegenden ReplicaSets. Dies geschieht durch die Erstellung neuer ReplicaSets und die
Anpassung ihrer Größe bei gleichzeitiger Verkleinerung bestehender ReplicaSets. Dieser
Prozess ermöglicht sogenannte "Rolling Updates". Unter "Rolling Updates" versteht man das
schrittweise Hinzufügen neuer Objekte und das Entfernen alter Objekte ohne Ausfallzeiten.
Eine weitere wichtige Eigenschaft des Deployments ist die Möglichkeit, die vorgenommenen
Änderungen durch ein Rollback wieder rückgängig zu machen.

Die Aktualisierung bzw. das "Rolling Update" von Container-basierten Anwendungen
funktioniert wie folgt:

• Im ersten Schritt wird ein neues ReplicaSet für die neue Version der Applikation (neues
Container-Image) bereitgestellt. Dieses neue ReplicaSet (R2) enthält zunächst keine
Pods.

• Danach startet das Deployment neue Pods im neuen ReplicaSet und stoppt gleichzeitig

die alten Pods im alten ReplicaSet. Dies geschieht schrittweise, um sicherzustellen,
dass die Anwendung weiterhin verfügbar ist und die Lastverteilung sichergestellt ist.

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

32

• Dieser Prozess wird fortgesetzt, bis alle alten Pods gestoppt und durch neue Pods
ersetzt wurden. Am Ende dieses Prozesses wird das alte ReplicaSet nicht gelöscht und
bleibt mit 0 Pods bestehen. Dies ist notwendig, falls während der Aktualisierung
Probleme auftreten und der Rollback-Prozess durchgeführt werden soll.

Deployment verwendet auch dieselben Labels, Selektoren und Operatoren wie ReplicaSets.

ReplicaSet vs. Deployment
 ReplikaSet Deployment

ReplicaSets sind dafür verantwortlich, eine
bestimmte Anzahl von Pods einer bestimmten
Spezifikation bereitzustellen und
aufrechtzuerhalten.

Deployments ermöglicht die Bereitstellung neuer
Versionen der Anwendungen durch die schrittweise
Erstellung der Pods in den neuen ReplicaSets und
die schrittweise Löschung der alten.

RollingUpdate – Parameter

Das RollingUpdate kann durch die beiden Parameter maxUnavailable und maxSurge gesteuert
werden. Der Parameter maxUnavailable gibt an, wie viele alte Pods gleichzeitig entfernt
werden können. Der Parameter maxSurge gibt an, wie viele neue Pods gleichzeitig erzeugt
werden können. Beide Parameter sind optional und haben den Standardwert 1.

kubectl Befehle für das Deployment

Hier sind die gängige kubectl Befehle, die dabei helfen, die Deployments im Cluster zu
verwalten und zu überwachen.

• kubectl get deployments - zeigt eine Liste aller Deployments im Cluster an.
• kubectl describe deployment <deployment-name> - gibt eine detaillierte Beschreibung

des angegebenen Deployments zurück.
• kubectl scale deployment <deployment-name> --replicas=<number> - skaliert die

Anzahl der Replikate im Deployment auf die angegebene Anzahl.
• kubectl rollout status deployment <deployment-name> - überprüft den Rollout-Status

des Deployments.

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

33

• kubectl rollout undo deployment <deployment-name> - setzt den Rollout auf eine vorherige
Version des Deployments zurück.

• kubectl rollout history deployment <deployment-name> - zeigt eine Liste der Rollout-Historie
des Deployments an.

• kubectl delete deployment <deployment-name> - löscht das angegebene Deployment aus
dem Cluster.

DaemonSet

Das DaemonSet sorgt dafür, dass eine Kopie eines bestimmten Pods auf allen oder einigen
Knoten eines Clusters läuft. Wenn ein neuer Knoten zum Cluster hinzugefügt wird, startet das
DaemonSet einen Pod auch auf diesem Knoten. Mit „einigen Knoten“ ist gemeint, dass
DaemonSet so konfiguriert werden können, dass sie nur auf bestimmten Knoten laufen.

Die DaemonSets in Kubernetes werden häufig für hauptsächlich technische Zwecke auf den
Knoten verwendet. Dazu gehören: Logging-Dienste, Überwachungssysteme, Netzwerkdienste
oder Sicherheitsdienste.

Im Gegensatz zu den anderen Kubernetes Controllern (ReplicaSets und Deployments)
verwendet das DaemonSet nicht nur Labels und Selectors, sondern auch das nodeSelector
oder nodeAffinity Attribut, um Pods einem bestimmten Node zuzuordnen.

Beispiel eines YAML-Manifestes für DaemonSet:

apiVersion: apps/v1

kind: DaemonSet

metadata:

 name: prometheus-daemonset

 namespace: default

spec:

 selector:

 matchLabels:

 name: prometheus

 template:

 metadata:

 labels:

 name: prometheus

 spec:

 nodeSelector:

 disk: ssd

 containers:

 - name: prometheus

 image: prometheus:2.44.0

 ports:

 - containerPort: 80

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

34

StatefulSet

Ein Kubernetes StatefulSet ist eine weitere Kubernetes-Ressource, die für die Bereitstellung
und Skalierung einer Gruppe von Pods verwendet werden kann. Wie der Name StatefulSet
schon andeutet, handelt es sich bei StatefulSets um zustandsbehaftete Anwendungen. Die
von StatefulSet erzeugten Pod-Instanzen haben eine eindeutige und persistente Identität.

Diese Identität muss auch dann erhalten bleiben, wenn die Pods neu geplant, aktualisiert,
gelöscht oder neu erstellt werden. Typische Anwendungsbeispiele für Stateful Pods sind
Datenbanken.

Hier sind einige der Hauptmerkmale von Stateful Pods:

• Alle Pods in einem StatefulSet müssen eindeutige und unveränderliche
Netzwerkidentifikation (Netzwerknamen) haben.

• Jeder Pod kann einem oder mehreren Persistent Volumes zugewiesen werden. Es muss
sichergestellt sein, dass die Zuordnung zu bestimmten Volumes auch nach einem
Neustart weiterhin unverändert bleibt.

• Für viele Anwendungen ist es äußerst wichtig, dass Pods in einer strikten Reihenfolge
erstellt, skaliert, gelöscht und geschlossen werden. Nur so kann die Konsistenz der
Daten gewährleistet werden.

Headless Service

Headless Services werden zusammen mit StatefulSets verwendet. Stateful-Anwendungen
erfordern oft eine direkte Kommunikation zwischen den Pods oder von außerhalb des Clusters
zu einem bestimmten Pod. Dies wäre mit Mechanismen wie Load Balancer oder ClusterIP
kaum umsetzbar, daher wird Cluster DNS verwendet, um die gegenseitige Kommunikation der
Pods über den Namen zu ermöglichen.

Hier ist ein einfaches Beispiel für ein Kubernetes StatefulSet mit einem zugehörigen Headless
Service

apiVersion: v1

kind: Service

metadata:

 name: mein-headless-service

spec:

 clusterIP: None # None macht diesen Service zu einem Headless Service

 selector:

 app: meine-app

 ports:

 - protocol: TCP

 port: 80

 targetPort: 9376

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

35

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: mein-statefulset

spec:

 serviceName: "mein-headless-service"

 replicas: 3

 selector:

 matchLabels:

 app: meine-app

 template:

 metadata:

 labels:

 app: meine-app

 spec:

 containers:

 - name: mein-container

 image: meine-image

 ports:

 - containerPort: 9090

Jobs

Während alle oben genannten Controller-Typen für den Start und den kontinuierlichen
Betrieb der Pods vorgesehen sind, besteht der Hauptzweck von Jobs darin, die einzelnen Tasks
in einem Kubernetes-Cluster auszuführen.

Die folgenden drei Szenarien beschreiben die Funktionsweise von Jobs am besten:

• Der Job ist dafür verantwortlich, einen oder mehrere Pods innerhalb des Kubernetes-
Clusters zu erstellen.

• Er sorgt auch dafür, dass der Pod oder die Pods ein bestimmtes Programm in einem
Container ausführen. Normalerweise sollte dieses Programm bis zu seinem
„natürlichen Ende“ laufen. Es sei denn, es wird aufgrund eines Fehlers oder aus einem
anderen Grund unterbrochen.

• Danach muss der Kubernetes-Job sicherstellen, dass die angegebene Anzahl von Pods
ihre Aufgaben erfolgreich abgeschlossen hat. Wenn dies nicht der Fall ist, startet der
Job diese Pods neu, um sicherzustellen, dass die Tasks abgeschlossen sind.

Jobs können parallel oder seriell ausgeführt werden und erzeugen mindestens einen Pod, der
die Aufgabe ausführt. Nach Beendigung des Jobs werden die Pods automatisch gelöscht.

Hier ist ein Beispiel einer einfachen Wartungsaufgabe. Im Container mein-container werden
die Daten aus dem Ordner /var/log gelöscht, wenn sie älter als 7 Tage sind:

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

36

apiVersion: batch/v1

kind: Job

metadata:

 name: log-cleaner

spec:

 template:

 spec:

 containers:

 - name: log-cleaner

 image: mein-container

 args:

 - /bin/sh

 - -c

 - find /var/log -type f -mtime +7 -delete

 restartPolicy: OnFailure

CronJobs

Ein CronJob wird verwendet, um eine bestimmte Aufgabe in regelmäßigen Abständen
automatisch auszuführen. Im Gegensatz zu einem "normalen" Job, der nur einmal ausgeführt
wird, kann ein CronJob nach einem bestimmten Zeitplan ausgeführt werden. Dieses Konzept
ähnelt dem UNIX- oder Linux-CronJob.

Healthcheck-Objekte

Liveness, Readiness und Startup Probes sind Mechanismen in Kubernetes, um die Gesundheit
von Containern in einem Pod zu überwachen und sicherzustellen, dass sie ordnungsgemäß
funktionieren.

Liveness Probe

Die Liveness Probe prüft, wie der Name schon sagt, ob ein Container noch läuft. Wenn die
Liveness Probe fehlschlägt, wird der Container neu gestartet.

Die Überprüfung des Containerstatus kann wie folgt durchgeführt werden: Es wird ein HTTP-
Request an eine bestimmte URL oder einen bestimmten Port des Containers gesendet,
solange eine erwartete Antwort zurückgegeben wird, wird der Container als „lebendig“
markiert. Es kann auch ein bestimmter Befehl innerhalb des Containers ausgeführt werden.

Hier ist ein Beispiel für eine Liveness Probe, die alle 10 Sekunden eine HTTP-Anfrage an die
URL "/healthcheck" sendet:

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

37

apiVersion: v1

kind: Pod

metadata:

 name: mein-pod

spec:

 containers:

 - name: mein-container

 image: mein-image

 livenessProbe:

 httpGet:

 path: /healthcheck

 port: 80

 periodSeconds: 10

Readiness Probe

Die Readiness Probe prüft, ob der Container im Pod bereit ist, eingehende Netzwerkanfragen
zu empfangen. In diesem Fall ist die Readiness Probe der Liveness Probe sehr ähnlich, jedoch
mit einem wichtigen Unterschied. Wenn die Readiness Probe eines Containers fehlschlägt,
wird Kubernetes keinen Netzwerkverkehr mehr an diesen Container senden, aber der
Container wird nicht neu gestartet.

Ein typischer Anwendungsfall für eine Readiness Probe wäre, dass eine Anwendung eine
gewisse Zeit benötigt, um zu starten (z.B. eine Datenbankverbindung zu einem Backend-
Server herzustellen), bevor sie Anfragen bearbeiten kann.

Hier ist ein Beispiel für eine Readiness Probe, die alle 5 Sekunden eine TCP-Verbindung zum
Port 8080 herstellt:

apiVersion: v1

kind: Pod

metadata:

 name: mein-pod

spec:

 containers:

 - name: mein-container

 image: mein-image

 readinessProbe:

 tcpSocket:

 port: 8080

 periodSeconds: 10

Startup Probe

Die Startup-Probe prüft, ob die Anwendung im Container erfolgreich gestartet wurde. Dieser
Test wird verwendet, wenn die Anwendung viel Zeit zum Starten benötigt (eine lange
Initialisierungsphase hat).

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

38

Wenn die Probe erfolgreich ist, wird davon ausgegangen, dass der Container korrekt gestartet
wurde. Wenn die Startup-Probe fehlschlägt, wird der Container neu gestartet.

Die Startup Probe kann verhindern, dass Kubernetes den Container ständig neu startet, weil
die Liveness Probe fehlschlägt, weil die Anwendung noch nicht initialisiert wurde.

Hier ist ein Beispiel für eine Startup Probe, die einen HTTP-Request an die URL "/startCheck"
sendet und den Container als erfolgreich gestartet markiert, wenn eine erfolgreiche Antwort
zurückgegeben wird:

apiVersion: v1

kind: Pod

metadata:

 name: mein-pod

spec:

 containers:

 - name: mein-container

 image: mein-image

 startupProbe:

 httpGet:

 path: / startCheck

 port: 8080

 failureThreshold: 30

 periodSeconds: 10

Taints und Tolerations

Taints und Tolerations sind Mechanismen, die sicherstellen, dass Pods nicht auf ungeeigneten
Kubernetes-Knoten geplant oder platziert werden. In Bezug auf Kubernetes kann der Begriff
Taints mit markiert oder gekennzeichnet übersetzt werden. Taints und Tolerations sind
untrennbar miteinander verbunden, da sie als Paar arbeiten. Taints werden zu Knoten
hinzugefügt, während Tolerations in der Pod-Spezifikation definiert werden. Wenn ein Taint
zu einem Knoten hinzugefügt wird, werden alle Pods abgelehnt, die keine Toleration für
diesen Taint haben.

Taints und Tolerations - technische Umsetzung

Die technische Umsetzung ist relativ einfach. Die Worker-Knoten müssen mit entsprechenden
Taints versehen werden, z.B. wir wollen erreichen, dass auf den Knoten wn-01 und wn-02 nur
die Pods ausgeführt werden, die mit dem Taint „monitoring“ versehen sind.

Die untere Befehle werden den Taint "monitoring" zu den Knoten wn-01 und wn-02 hinzufügt.
Dabei wird die Option "NoSchedule" verwendet. (wird weiter unter erklärt).

kubectl taint nodes wn-01 monitoring:NoSchedule

kubectl taint nodes wn-02 monitoring:NoSchedule

Weiterhin muss eine YAML-Datei erstellt werden, die diesen Taint macht.

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

39

apiVersion: apps/v1

kind: Deployment

metadata:

 name: mein-deployment

spec:

 replicas: 3

 selector:

 matchLabels:

 app: mein-app

 template:

 metadata:

 labels:

 app: mein-app

 spec:

 containers:

 - name: mein-app

 image: nginx

 tolerations:

 - key: "monitoring"

 operator: "Exists"

 effect: "NoSchedule"

Hier ist die visuelle Darstellung der Konfiguration:

Taint-Optionen

• NoSchedule - bedeutet, dass der Kubernetes Scheduler keine neuen Pods auf dem
Knoten zulässt, wenn diese den Taint nicht tolerieren. NoSchedule hat keinen Einfluss
auf Pods, die bereits auf dem Knoten laufen.

• PreferNoSchedule - in diesem Fall versucht der Kubernetes Scheduler die Planung von
Pods zu vermeiden, die keine Toleranz für fehlerhafte Knoten haben. Diese Option wird
verwendet, wenn keine besser geeigneten Knoten verfügbar sind.

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

40

• NoExecute – dies ist die härtere Version von „NoSchedule“. NoExecute entfernt
(evakuiert) Pods, die bereits auf dem Knoten laufen, wenn sie den Taint nicht
tolerieren.

Typische Anwendungsfälle

Der NoSchedule-Effekt wird häufig verwendet, wenn die Notwendigkeit besteht, Worker-
Knoten für bestimmte Aufgaben oder Benutzergruppen zu reservieren oder sicherzustellen,
dass nur bestimmte Pods auf Knoten mit spezieller Hardware (wie z.B. wie GPUs) geplant
werden.

Ein Beispiel ist die garantierte Nutzung durch eine bestimmte Benutzergruppe oder die
Verwendung einer bestimmten Hardware:

kubectl taint nodes <nodename> cityCologne:NoSchedule

kubectl taint nodes <nodename> grafikkarte:NoSchedule

Wenn es notwendig und sinnvoll ist, können die Taints ein wenig komplexer sein, z.B:

kubectl taint nodes <node-name> grafikkarte=true:NoSchedule

In diesem Fall wird die Tolerations in spec so aussehen:

spec:

 containers:

 - name: pod-name

 image: image-name

 tolerations:

 - key: "grafikkarte"

 operator: "Equal"

 value: "true"

 effect: "NoSchedule"

Der NoExecute-Effekt wird in den folgenden Situationen verwendet:

Der andere Anwendungsfall wäre, wenn ein Knoten aufgrund eines Netzwerkausfalls oder aus
anderen Gründen nicht erreichbar ist. In diesem Fall kann dem Knoten kein Taint direkt
zugewiesen werden, sondern der Zustand des Knotens als wird in der Kubernetes API mit dem
Schlüssel "nicht erreichbar" (node.kubernetes.io/unreachable) oder "nicht bereit"
(node.kubernetes.io/not-ready) markiert und dem Effekt NoExecute zugewiesen. Die
Unterschiede zwischen unreachable und not-ready werden weiter unten erklärt.

Zusätzlich kann dem Taint eine tolerationSeconds-Option hinzugefügt werden. Die Option
tolerationSeconds bestimmt, wie lange der Knoten von der Verteilung ausgeschlossen
bleibt. Der Standardwert ist 300 Sekunden, kann aber in der Pod-Spezifikation überschrieben
werden.

Hier ist die Liste der Labels, die zur Beschreibung des Knoten-Zustandes eingesetzt werden.
Die Labels werden nicht nur in Verbindung mit Taints verwendet.

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

41

Zustand Beschreibung

 node.kubernetes.io/not-ready

 not-ready wird automatisch hinzugefügt, wenn der Status des
Kubelet Heartbeats von Ready zu NotReady wechselt. Der mögliche
Anwendungsfall könnte z.B. sein, dass der Control-Node den Worker
zwar netzwerktechnisch erreicht, aber den Workload nicht ausführen
kann.

 node.kubernetes.io/unreachable

 unreachable wird ebenfall automatisch hinzugefügt, wenn der
Kubernetes Control-Nodes keine Verbindung zum Worker-Nodes
herstellen kann
(Netzwerkprobleme, Worker heruntergefahren, Kubelet läuft nicht)

 node.kubernetes.io/unschedulable

unschedulable bedeutet, dass keine neuen Pods auf dem Knoten
geplant werden können. Dies kann durch den Administrator oder
aufgrund von Ressourcenknappheit festgelegt werden (die drei
unteren Punkte).

 node.kubernetes.io/network-
unavailable

 network-unavailable bedeutet, dass das Netzwerk des Knoten nicht
verfügbar ist

 node.kubernetes.io/memory-
pressure

 memory-pressure bedeutet, dass der Speicher auf dem Knoten
knapp wird und der Workload möglicherweise nicht mehr ausgeführt
werden kann.

 node.kubernetes.io/disk-pressure disk-pressure weist auf eine hohe Auslastung der Festplatten auf den
Knoten hin

 node.kubernetes.io/pid-pressure
 pid-pressure bedeutet, dass die Anzahl der noch verfügbaren
Prozess-IDs (PIDs) auf dem Knoten knapp wird und neue Prozesse
nicht gestartet werden können.

Alle oberen Labels werden abhängig vom Knotenstatus mit dem Befehl kubectl describe
node angezeigt:

• not-ready und unreachable im Abschnitt Taints.
• network-unavailable, memory-pressure, disk-pressure und pid-pressure im

Abschnitt Conditions.
• Unschedulable kommt separat.

NodeSelector

NodeSelector ist eine relativ einfache Methode, um einen Pod einem bestimmten Node
zuzuweisen. Die Konfiguration des NodeSelectors erfolgt durch Zuweisung von Schlüssel-
Wert-Paaren in der Pod-Spezifikation.

In unserem Beispiel wollen wir sicherstellen, dass bestimmte Knoten nur auf den Pods laufen,
die mit SSDs ausgestattet sind. Zuerst weisen wir einem Node ein Label zu:

kubectl label nodes <podname> disktype=ssd

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

42

So kann die dazugehörige Pod-Konfiguration aussehen:

apiVersion: v1

kind: Pod

metadata:

 name: mein-pod

spec:

 containers:

 - name: mein-container

 image: mein-nginx

 nodeSelector:

 disktype: ssd

Node Affinity

Node Affinity kann als Erweiterung von NodeSelector angesehen werden. Node Affinity bietet
mehr Flexibilität und kann zwischen „erforderlichen" oder „harten“ Regeln und "bevorzugten"
oder „weichen“ Regeln unterscheiden.

Die Trennung zwischen den erforderlichen und den bevorzugten Anforderungen erfolgt auf
der Grundlage dieser Optionen:

requiredDuringSchedulingIgnoredDuringExecution - harte Anforderung

preferredDuringSchedulingIgnoredDuringExecution - weiche Anforderung

Die folgenden Beispiele veranschaulichen diese Optionen:

Labels hinzufügen:

kubectl label nodes <node-name> disk=ssd-sata6

kubectl label nodes <node-name> disk=ssd-nvme

Aufgrund der harten Anforderung können Pods nur auf Knoten mit dem Label „disk“ und dem
Wert "ssd-nvme" geplant werden. Wenn kein solcher Knoten vorhanden ist, werden die Pods
nirgendwo gestartet.

apiVersion: apps/v1

kind: DaemonSet

metadata:

 name: prometheus-daemonset

 namespace: default

spec:

 selector:

 matchLabels:

 name: prometheus

 template:

 metadata:

 labels:

 name: prometheus

 spec:

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

43

 affinity:

 nodeAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 nodeSelectorTerms:

 - matchExpressions:

 - key: disk

 operator: In

 values:

 - ssd-nvme
 containers:

 - name: prometheus

 image: prometheus:2.44.0

 ports:

 - containerPort: 80

Aufgrund der weichen Anforderung werden Pods auf Knoten mit dem Label „disk“ und dem
Wert "ssd-sata6" eingeplant, wenn diese vorhanden sind. Ist dies nicht der Fall, werden
beliebige Knoten verwendet.

kind: DaemonSet

metadata:

 name: prometheus-daemonset

 namespace: default

spec:

 selector:

 matchLabels:

 name: prometheus

 template:

 metadata:

 labels:

 name: prometheus

 spec:

 affinity:

 nodeAffinity:

 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 1

 preference:

 matchExpressions:

 - key: disk

 operator: In

 values:

 - ssd-sata6

 containers:

 - name: prometheus

 image: prometheus:2.44.0

 ports:

 - containerPort: 80

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

44

Der Parameter weight wird in preferredDuringSchedulingIgnoredDuringExecution
verwendet und kann einen Wert zwischen 1 und 100 haben. Der Wert stellt die Priorität dar,
je höher der Wert, desto mehr wird dieses Pod vom Scheduler bevorzugt.

Damit der Parameter weight richtig verwendet werden kann, sollten die Optionen
(preferredDuringSchedulingIgnoredDuringExecution) mit mehreren Auswahlmöglichkeiten
versehen und entsprechend gewichtet werden. So sieht eine mögliche Konfiguration aus:

 preferredDuringSchedulingIgnoredDuringExecution:

 - weight: 1

 preference:

 matchExpressions:

 - key: disk

 operator: In

 values:

 - ssd-sata6

 - weight: 5

 preference:

 matchExpressions:

 - key: disk

 operator: In

 values:

 - ssd-nvme

Pod Affinity / Pod Anti-Affinity
Pod Affinity

Pod Affinity stellt sicher, dass einzelne Pods oder eine Gruppe von Pods auf demselben Knoten
(oder einer Gruppe von Knoten) ausgeführt werden. Dies ist für Anwendungen interessant,
die in einer gewissen Abhängigkeit zueinander stehen und eine optimale
Netzwerkkommunikation benötigen.

Analog zu den Node Affinity verwenden Pod Affinity gleiche Mechanismen:

• requiredDuringSchedulingIgnoredDuringExecution

• preferredDuringSchedulingIgnoredDuringExecution

Im folgenden Beispiel wird der Scheduler versuchen, die drei Pods des Webservers auf dem
gleichen Knoten zu platzieren, auf dem bereits die Datenbank ("app=database") läuft.

apiVersion: apps/v1

kind: Deployment

metadata:

 name: web-server

spec:

 replicas: 3

 selector:

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

45

 matchLabels:

 app: web-server

 template:

 metadata:

 labels:

 app: web-server

 spec:

 affinity:

 podAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 - labelSelector:

 matchExpressions:

 - key: app

 operator: In

 values:

 - database

 topologyKey: "kubernetes.io/hostname"

 containers:

 - name: web-server

 image: web-server-container

Die Bindung an einen Knoten wird durch das Schlüssel-Wert-Paar bestimmt: topologyKey:
"kubernetes.io/hostname". Die Manifestdatei für das Datenbank-Deployment muss
dementsprechend das Schlüssel-Wert-Paar "app: database" enthalten. Mögliche Operatoren
sind: In, NotIn, Exists, DoesNotExist, Lt, Gt.

Datenbank-Deployment:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: database

spec:

 replicas: 1

 selector:

 matchLabels:

 app: database

 template:

 metadata:

 labels:

 app: database

 spec:

 containers:

 - name: database

 image: meine-database

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

46

Hier ist ein weiteres Beispiel von der offiziellen Kubernetes-Seite. In diesem Fall erfolgt die
Platzierung der Pods anhand eines Topologie-Labels "topology.kubernetes.io/zone"
(geografische Zone eines Cloud-Providers). Pods werden entweder in europa-nord oder
europa-west platziert.

affinity:

 nodeAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 nodeSelectorTerms:

 - matchExpressions:

 - key: topology.kubernetes.io/zone

 operator: In

 values:

 - europa-nord

 - europa-west

Pod Anti-Affinity

Pod Anti-Affinity ist natürlich das Gegenteil von Pod Affinity. Mit Pod Anti-Affinity kann
sichergestellt werden, dass bestimmte Pods nicht auf demselben Knoten laufen. Diese Option
kann bei der Planung von Hochverfügbarkeit nützlich sein. Mit Pod Anti-Affinity kann
verhindert werden, dass Pods, die den gleichen Dienst ausführen, auf dem gleichen Node
laufen.

Auch hier gelten dieselben Mechanismen:

• requiredDuringSchedulingIgnoredDuringExecution

• preferredDuringSchedulingIgnoredDuringExecution

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

47

Kubernetes Netzwerk

Das Kubernetes-Netzwerk ist ein virtuelles Netzwerk, welches in erster Linie dazu dient, die
Kommunikation zwischen den Pods und anderen Services/Komponenten im Kubernetes
Cluster zu ermöglichen.

Das Kubernetes-Netzwerk unterscheidet sich von anderen Netzwerktypen in mehreren
Bereichen:

CNI-Plugin
Das CNI-Plugin (CNI steht für Container Networking Interface) ist in Grunde genommen eine
Spezifikation für verschiedene Netzwerk-Plugins in Kubernetes. Das CNI-Plugin selbst dient zur
Verwaltung der Netzwerkverbindungen zwischen Pods und Diensten innerhalb des Clusters.
Es existiert bereits eine breite Palette von CNI-Plugins, die die Basis-Funktionalität wesentlich
erweitern können. Mehr dazu auf dieser Seite www.github.com/cni

Service-Discovery
Service-Discovery wie der Name auch sagt, dient zur Erkennung der Services innerhalb eines
Clusters, besonders wenn diese aus mehreren Containern bestehen und auch auf
verschiedenen Knoten laufen. Außerdem ermöglicht Service-Discovery den Pods, andere Pods
und Services im Cluster zu finden, ohne spezifische IP-Adressen kennen zu müssen.

Network-Policies
Die Network-Policies können den Netzwerkverkehr zwischen den Pods und Services im
Kubernetes Cluster steuern. Die ermöglichen auch den Netzwerk-Traffic basierend auf IP-
Adressen, Ports und anderen Merkmalen zu filtern.

Pod-to-Pod-Kommunikation
Die Pods, die auf verschiedenen Nodes aufgeführt werden, können miteinander ohne
zusätzlichen speziellen Konfigurationen kommunizieren.

Netzwerk-Arten im Kubernetes Cluster

In einem Kubernetes-Cluster gibt es drei Arten von Netzwerken: das Node Network, das Pod
Network / Cluster Network und das Service Network. Jedes Netzwerk erfüllt seine spezifische
Rolle im Cluster.

• Node Network - Kommunikation zwischen den verschiedenen Worker- und Control-
Knoten im Cluster.

• Pod Network - Kommunikation zwischen den einzelnen Pods im Cluster.

• Service Network - Abstrakte Schicht, die stabile Netzwerkzugriffspunkte für einen oder
mehrere Pods bereitstellt.

https://github.com/containernetworking/cni

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

48

Node Network

Das Node Network wird von Kubernetes verwendet, um die Kommunikation zwischen den
Nodes im Cluster zu ermöglichen. Das Node Network wird für folgende Zwecke genutzt: den
Clusterzustand zu synchronisieren, zur Lastverteilung zwischen den Nodes, für den Zugriff
auf gemeinsam genutzte Ressourcen wie z.B. Storage.

Pod Network / Cluster Network

Das Pod Network dient verständlicherweise für die Kommunikation zwischen den Pods in
einem Cluster, unabhängig davon auf welchen Cluster diese ausgeführt werden. Jeder Pod im
Cluster hat seine eindeutige IP-Adresse, die innerhalb des gesamten Clusters nur einmal
vorkommt. Das Pod-Netzwerk in Kubernetes wird durch CNI-Plugins bereitgestellt und
verwaltet. Die Funktionsweise von CNI-Plugins wird weiter näher erläutert.

Die Begriffe "Cluster-Network" und "Pod-Network" werden oft als Synonyme gesehen. Da es
in beiden Fällen um die Bereiche handelt, die für die Kommunikation zwischen Pods im Cluster
verwendet werden.

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

49

Auf dem unteren Bild werden die IP-Adressen des Pod-Netzwerks angezeigt, die bei der
Konfiguration von Calico-PlugIn eingegeben wurden.

Service Network

Dieser IP-Bereich wird für die Kubernetes-Services verwendet. Der Zweck des Service-
Netzwerks besteht darin, einem oder mehreren Pods, die den gleichen Service repräsentieren,
eine eindeutige IP-Adresse und einen eindeutigen DNS-Namen zuzuweisen.

Wenn die Konfiguration von Service Network nicht geändert wurde, werden die IP-Adresse
aus dem Bereich 10.96.0.0/12 zugewiesen. So lässt sich die Konfiguration verifizieren:

kubectl get pods -n kube-system

kubectl describe pod <API_SERVER_POD_NAME> -n kube-system
Nach „--service-cluster-ip-range“ suchen.

Service Networks beinhaltet eine Reihe von Komponenten oder bessergesagt dazugehörigen
Objekten:

Service-Objekt ist sozusagen ein Kern-Objekt des Service Networks und sorgt dafür, dass die
zugrunde liegenden Pods über dauerhaften IP-Adressen oder DNS-Namen (abhängig vom
Service-Typ) erreichbar sind. Dadurch wird erreicht, dass die IP-Adresse oder der DNS-Name
des Services unverändert bleibt, auch dann, wenn die IP-Adressen der zugrundeliegenden
Pods geändert werden.

Label-Selectors sorgen dafür, dass z.B. der Datenverkehr zu einer Gruppe von Pods geleitet
wird, wenn diese Pods mit entsprechenden Labels versehen sind.

Load Balancing diese Option ist eigentlich selbsterklärend. LB sorgt für den gleichmäßigen
Lastausgleich zwischen den verfügbaren Pods, die zum selben Service gehören.

Service-Typs es handelt sich dabei um die Methode, wie auf einen Service (z.B. ClusterIP,
NodePort usw.) zugegriffen wird. Mehr dazu in Teil 2 des Beitrages.

EndpointSlice ist ein API-Objekt, welches von Control Nodes erstellt wird und Informationen
über verfügbare Dienstinstanzen (Pods) und deren IP-Adressen/Ports speichert. Die
Funktionsweise von EndpointSlice ist besonders dann sichtbar, wenn ein Service aus mehreren
Pods besteht. EndpointSlice hilft dabei, den eingehenden Datenverkehr auf die Pods zu
verteilen, indem es die Zuordnung von IP-Adressen und Ports zu den Pods organisiert und
bereitstellt.

https://www.kreyman.de/index.php/kubernetes/261-kubernetes-netzwerk-architektur-service-typen

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

50

Kubernetes Ingress

Ingress ist eine Kubernetes-Ressource, die den Zugriff auf Services eines Clusters von außen
ermöglicht. Ingress bietet mehrere Optionen zur Steuerung des eingehenden
Netzwerkverkehrs. Der Traffic kann basierend auf Namen, Pfaden oder verschiedene Dienste
innerhalb des Clusters verteilt werden. Ingress kann die Aufgaben eines Reverse Proxy
übernehmen und somit den Zugriff auf einen oder mehrere interne Server von außen steuern.
Außerdem kann zur SSL-Terminierung verwendet werden, um den SSL-Datenverkehr an einen
Service weiterzuleiten.

Des Weiteren werden einige Ingress-Funktionsweisen erklärt:

Name-based Virtual Hosts
Ingress kann den eingehenden Datenverkehr basierend auf Hostnamen auf unterschiedliche
Services innerhalb desselben Clusters verteilen. Diese Methode ist nützlich, wenn mehrere
Anwendungen auf derselben Infrastruktur ausgeführt werden, z.B. wenn eine Anwendung
unter app1.demo.de und eine andere unter app2.demo.de verfügbar sein sollte.

Path-based Routing
Ingress kann auch das Routing des eingehenden Datenverkehrs basierend auf bestimmten
Pfaden bedienen. Das bedeutet, dass unterschiedliche Pfade auf verschiedene Services
innerhalb des Clusters verweisen können, die aber auf denselben Cluster-IP-Adressen laufen.
So lässt sich folgendes Szenario umsetzen, dass eine Anfrage an /app1 auf einen Service und
eine Anfrage an /app2 auf einen anderen Service geroutet wird.

TLS Termination
Wie oben bereits erwähnt, kann auch Ingress als TLS-Terminierungspunkt dienen. Ingress kann
die Entschlüsselung des eingehenden Datenverkehrs übernehmen und die Daten an den
entsprechenden Service weiterleiten.

Service API vs. Ingress
Der Hauptunterschied zwischen der Kubernetes Service API und Ingress besteht darin, dass
Kubernetes Service API auf OSI Layer 4 (Transport Layer) und Ingress auf OSI Layer 7
(Application Layer) arbeitet, und somit eine erweiterte Funktionalität für die Verarbeitung von

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

51

HTTP-Verkehr bietet. Wenn es bei OSI Layer 4 hauptsächlich darum geht, die Datenpakete
erfolgreich vom Sender zum Empfänger zu übertragen, beschäftigt sich Layer 7 mit den
Anwendungen, die auf dieser Ebene tätig sind (z.B. E-Mail, Webbrowser usw.). Auch die
Implementierung von Load Balancing Algorithmen oder TLS-Verschlüsselung findet auf der
Anwendungsebene statt.

Zusätzlich zum Ingress-Controller etabliert sich die Gateway API als moderner Standard für
das Traffic-Management, da sie rollenbasierte Konfigurationen und erweiterte Routing-
Funktionen bietet.

Open Source Ingress Controller
Es gibt verschiedene Open-Source-Ingress-Controller, die mit Kubernetes verwendet werden
können. Die drei verbreitetste sind: Nginx, Traefik und Contour. Wobei Nginx Ingress
Controller scheint der populärste von allen zu sein. Alle drei Controller haben ähnliche
Funktionen (Reverse-Proxy, Load-Balancer, TLS-Terminierung) und unterscheiden sich in der
Architektur und Implementierung. Die Wahl hängt von den spezifischen Anforderungen und
Vorlieben ab.

Ingress Beispiel
apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: test-ingress

 annotations:

 nginx.ingress.kubernetes.io/rewrite-target: /

spec:

 rules:

 - host: demo.de

 http:

 paths:

 - path: /app

 pathType: Prefix

 backend:

 service:

 name: test-service

 port:

 name: http

Im oberen Beispiel wird ein Ingress Controller mit dem Namen test-ingress erstellt. Der
Hostnamen demo.de wird verwendet. Alle Anfragen, die auf den Pfad /app beginnen, werden
an den Service mit namens test-service und dem Port http weitergeleitet. Die
Annotation nginx.ingress.kubernetes.io/rewrite-target: / sorgt dafür, dass alle eingehende
Anfragen an den Pfad / der Ziel-Service weitergeleitet werden.

Kubernetes Egress

Egress ist ein Antipode von Ingress. Egress beschäftigt sich verständlicherweise mit den
ausgehenden Datenverkehr zu den externen Ressourcen oder APIs. Mit Egress lassen sich
ebenfalls unterschiedliche Regeln definieren, um den Datenverkehr auf der Basis

https://www.nginx.com/
https://traefik.io/traefik/
https://projectcontour.io/

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

52

verschiedenen Attributen wie z.B. IP-Adressbereiche, Ports, Protokolle, Namespace-, Pod-,
oder Service-Labels zu steuern. Die Egress-Regeln werden in den Network Policies
konfiguriert.

Egress Beispiel
apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: allow-egress

spec:

 podSelector: {}

 policyTypes:

 - Egress

 egress:

 - to:

 - ipBlock:

 cidr: 10.0.0.0/24

 except:

 - 10.0.0.2/32

In diesem Bespiel wird eine Network Policy namens allow-egress. Die Policy wird auf alle Pods
angewendet. Der Policy-Typ Egress zeigt, dass es sich um den ausgehenden Datenverkehr
handelt. In diesem Beispiel darf der ausgehende Datenverkehr nur an einen bestimmten IP-
Bereich (in diesem Fall 10.0.0.0/24) geleitet werden, außer einer Ausnahme (10.0.0.2).

Kubernetes DNS

Kubernetes DNS (Domain Name System) ist eine integrierte Funktion von Kubernetes, die es
Containern und Services im Cluster ermöglicht, über DNS-Namen, anstatt über IP-Adressen zu
kommunizieren. Dadurch kann die Kommunikation zwischen Containern und Services
vereinfacht werden. (ab der Version 1.21 ist nicht mehr supportet)

Im Kubernetes Cluster wird der DNS-Service in diesem Format
"service.namespace.svc.cluster.local" verwendet.

Kubernetes CoreDNS

Kubernetes CoreDNS ist ein spezielles DNS-Plugin, das als Standard-DNS-Server in Kubernetes-
Clustern verwendet wird. CoreDNS erweitert die Basis-Funktionen und gibt z.B. die
Möglichkeit, mehrere Domainnamen zu verwenden und DNS-Anfragen auf externe DNS
weiterzuleiten. Ab der Version v1.26 ist CoreDNS die einzige unterstützte Cluster-DNS-
Anwendung.

Hier sind die Vorteile aus der offiziellen Seite von CoreDNS: https://coredns.io

• Flexibilität: CoreDNS ist sehr flexibel und ermöglicht es Benutzern, benutzerdefinierte
DNS-Server zu erstellen.

https://de.wikipedia.org/wiki/Domain_Name_System
https://coredns.io/
https://coredns.io/

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

53

• Einfachheit: CoreDNS verwendet einfache und verständliche textbasierte
Konfigurationsdateien Corefile).

• Performance: CoreDNS ist darauf ausgelegt eine hohe Leistung und geringe Latenzzeiten
zu bieten.

• Erweiterbarkeit: Die CoreDNS Plugin-Architektur gibt es die Möglichkeit, neue
Funktionen hinzuzufügen oder vorhandene Funktionen zu erweitern.

• DNS-Protokolle: CoreDNS unterstützt sowohl DNS-over-HTTP (DoH) als auch DNS-over-
TLS (DoT)

So lassen sich DNS- oder CoreDNS-Pods anzeigen:

kubectl get pods --namespace=kube-system -l k8s-app=kube-dns

Kubernetes Netzwerk-Plugins / Container Networking Interface (CNI)

Wenn man über Kubernetes Netzwerk-Plugins und CNI-Plugins spricht, ist meist dasselbe
gemeint. CNI ist auch als eine Spezifikation zu verstehen, die von der Cloud Native Computing
Foundation (CNCF) entwickelt wurde. Die Plugins erweitern die integrierte
Netzwerkfunktionalität von Kubernetes wie z. B. Cluster-IP, NodePort oder LoadBalancer.
Besonders in einem großen Cluster (mit vielen Pods und Nodes) kann die Nutzung von Plugins
für bessere Skalierbarkeit und effizientere Lastverteilung sorgen sowie im Bereich Sicherheit
viele Vorteile bieten. Die CNI-Plugins können verschiedene Arten von Netzwerken
bereitstellen: Overlay-Netzwerke, Bridge-Netzwerke und Layer 3-Netzwerke.

Kubernetes unterstützt eine Vielzahl von CNI-Plugins, darunter Flannel, Cilium, Calico, Weave
Net und andere. Die Wahl des CNI-Plugins hängt von den spezifischen Anforderungen und der
Infrastruktur des Kubernetes-Clusters ab. Weitere Information zum Thema: www.cni.dev und
www.github.com/containernetworking/plugins

Service-Typen

Wie wir bereits wissen, werden Anwendungen in Kubernetes innerhalb von Pods
bereitgestellt und müssen sowohl untereinander als auch nach außen kommunizieren. Um
diese Kommunikation zu ermöglichen und zu vereinfachen, stellt Kubernetes verschiedene
Service-Typen zur Verfügung. Die Service-Typen dienen als Abstraktionsschicht, um eine
Netzwerkverbindung zwischen den verschiedenen Pods innerhalb des Clusters und Objekten
außerhalb des Clusters bereitzustellen.

Weiter geht es um folgende Kubernetes-Komponenten bzw. Service-Typen:

• ClusterIP
• NodePort
• LoadBalancer
• ExternalIPs
• ExternalName

http://www.cni.dev/
http://www.github.com/containernetworking/plugins

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

54

ClusterIP

Die Cluster-IP ist eine Art virtuelle IP-Adresse, die einem Kubernetes-Service zugewiesen wird.
Diese IP-Adresse ist nur innerhalb des Clusters verfügbar und ermöglicht anderen Pods und
Services den Zugriff auf den Service. ClusterIP ist der Standard-Servicetyp in Kubernetes.

Beispiel ClusterIP

apiVersion: v1

kind: Service

metadata:

 name: test-clusterip-service

spec:

 selector:

 app: test-app

 ports:

 - name: http

 port: 80

 targetPort: 8080

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

55

NodePort

NodePort ist eine Netzwerkfunktion, die es einem Service ermöglicht, über eine Portnummer
auf jedem Node im Cluster verfügbar zu sein. Der für den NodePort verwende Port wird
automatisch aus einem Bereich zwischen 30000 bis 32767 ausgewählt. Wenn ein Client auf
den Service zugreifen möchte, muss er nur die IP-Adresse eines der Nodes im Cluster und den
zugewiesenen NodePort verwenden.

Beispiel NodePort

apiVersion: v1

kind: Service

metadata:

 name: test-nodeport-service

spec:

 selector:

 app: test-app

 type: NodePort

 ports:

 - name: http

 port: 80

 targetPort: 8080

 nodePort: 30000

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

56

LoadBalancer

Der Service-Typ LoadBalancer bietet einem Service die Möglichkeit, über eine externe Load-
Balancer-IP-Adresse erreichbar zu sein. Wenn ein Client auf die Load-Balancer-IP-Adresse
zugreift, wird der Datenverkehr an den Service im Cluster weitergeleitet.

LoadBalancer wird normalerweise von einem Cloud-Anbieter bereitgestellt. Welche Load-
Balancing-Methoden (z.B. Round Robin, Least Connection, Least Bandwidth, Least Response
Time usw.) verwendet werden, hängt von der Implementierung des Load Balancers ab. In
vielen Fällen wird Round-Robin-Load-Balancing eingesetzt.

ExternalIPs

Wie Sie auf dem oberen Bild erkennen können, weisen die Service-Typen ExternalIPs und
NodePort gewisse Ähnlichkeiten auf. ExternalIPs ermöglicht den Zugriff auf einen internen

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

57

Dienst über eine externe IP-Adresse, die verständlicherweise nicht vom Kubernetes-Cluster
selbst verwaltet wird. Bei Verwendung von ExternalIPs wird der Datenverkehr von den
angegebenen externen IP-Adressen direkt auf die Pods im Cluster weitergeleitet.

Diese Funktion kann nützlich sein, wenn man einen Service für den Zugriff von außen
bereitstellen möchte, ohne dabei einen LoadBalancer zu verwenden. Auch wenn bestimmte
IP-Adressen für den Zugriff auf den Service zugelassen werden müssen, kann diese Funktion
sinnvoll sein.

Beispiel ExternalName

Sie können eine oder mehrere externe IP-Adressen in der Service-Definition angeben, damit
der Service über diese Adressen erreichbar ist. Die IP-Adresse 10.10. 20.10 muss außerhalb
des Kubernetes-Clusters verwaltet werden.

apiVersion: v1

kind: Service

metadata:

 name: test-externalip-service

spec:

 selector:

 app: my-app

 ports:

 - protocol: TCP

 port: 80

 targetPort: 8080

 externalIPs:

 - 10.10.20.10

So sieht es aus, wenn drei IP-Adressen (wie auf dem Bild) konfiguriert werden:

 externalIPs:

 - 10.10.20.10

 - 10.10.20.11

 - 10.10.20.12

NodePort vs. ExternalIPs

Obwohl NodePort und ExternalIPs auf den ersten Blick ähnlich erscheinen, gibt es gravierende
Unterschiede zwischen den beiden Service-Typen. Bei NodePort werden die Ports auf jedem
Knoten im Cluster automatisch von Kubernetes reserviert und verwaltet. Dabei ist keine
manuelle Konfiguration erforderlich, aber die Anzahl der verfügbaren Portbereiche für
NodePort-Dienste ist beschränkt. Bei ExternalIPs hingegen müssen eine oder mehrere externe
IP-Adressen manuell konfiguriert werden. Die Anzahl der Portbereiche ist aber nicht begrenzt.

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

58

ExternalName

Wie man auf dem Bild erkennen kann, leitet der ExternalName den Datenverkehr in eine
umgekehrte Richtung, nämlich nach außen. Dies macht den Service-Typ ExternalName zu
einer besondere Art von Service in Kubernetes. Der ExternalName kommt zum Einsatz, wenn
Anwendungen innerhalb des Clusters auf externe Dienste zugreifen müssen, ohne dass
IPs/Ports direkt in den Konfigurationen verwaltet werden.

Bei der Erstellung eines ExternalName werden keine Selektoren (selector) sondern externen
DNS-Namen verwendet. Wenn ein Clients (Pod/Container) innerhalb des Clusters diesen
Service ansprechen, wird der angegebene DNS-Name anstelle der Service-Adresse
zurückgegeben.

Beispiel ExternalName

In unteren Beispiel erstellt der ExternalName-Service einen DNS-Eintrag für test-db-
service.svc.cluster.local. Wenn irgendein Pod innerhalb des Clusters versucht, den Service
unter dieser Adresse aufzurufen, wird die Anfrage an test-db.demo.lab weitergeleitet.

apiVersion: v1

kind: Service

metadata:

 name: test-db-service

spec:

 type: ExternalName

 externalName: test-db.demo.lab

 ports:

 - name: db-port

 port: 3306

 protocol: TCP

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

59

Kubernetes Storage

Zu Beginn ihrer technologischen Entwicklung waren Container ausschließlich für die
Bereitstellung zustandsloser Anwendungen vorgesehen. Das bedeutet, dass kurzlebige
Objekte nur in der beschreibbaren Schicht eines Containers (Pods) existieren und jedes Mal
verloren gehen, wenn ein Pod (in dem ein Container läuft) „zerstört“ und neu erzeugt wird.
Daher war es notwendig, eine Technologie zu entwickeln, die sicherstellt, dass die
Anwendungsdaten auch nach einem Recreate, oder besser gesagt, während des gesamten
Lebenszyklus eines Pods, verfügbar bleiben.

Folgende Objekte helfen uns, die beschriebene Herausforderung zu meistern:

• Volume
• Persistent Volume
• Persistent Volume Claim
• Storage Class
• Access Modes

Im Laufe der Jahre wurden immer mehr stateful (zustandsbehaftet) Applikationen in
containerisierter Form bereitgestellt, besonders die Applikationen, die eine Datenbank
benötigen.

Volumes

Wie Sie aus der vorherigen Ausführung bereits entnehmen konnten, werden die Volumes nur
zum Speichern temporärer Daten während der Lebenszeit eines Pods verwendet. Wenn der
Pod gelöscht wird, werden auch alle dazu zugehörige Volumes ebenfalls gelöscht.

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

60

Persistent Volume

Das Persistent Volume (PV) ist ein API-Objekt, welches den eigentlichen Speicher darstellt.
Wie der Name schon sagt, ist der Lebenszyklus eines Persistent Volumes völlig unabhängig
vom Lebenszyklus eines Pods. Ein Persistent Volume kann von einem Administrator oder
dynamisch in einem Kubernetes Cluster bereitgestellt werden. Das PV steht dem gesamten
Cluster zur Verfügung und ist keinem Namespace zugeordnet.

Aus technischer Sicht werden die Persistent Volume Objekte im API-Server erstellt. Die
Persistent Volumes werden auf die einzelnen Worker Nodes gemappt. Das Kubelet mappt die
PVs auf die einzelnen Pods. Sobald dem Knoten Speicher zugewiesen und der Pod gestartet
wurde, wird das Persistent Volume auf den Container gemountet.

PVs können entweder manuell durch einen Administrator oder dynamisch durch einen
Storage Klassen Controller bereitgestellt werden. Eine Storage-Klasse definiert eine Gruppe
von Speichertypen, die von einer dynamischen Provisionierung-Logik verwendet werden, um
PVs automatisch zu erstellen. Wenn ein Pod ein PVC anfordert und keine passenden PVs
verfügbar sind, wird automatisch ein neues PV erstellt.

Wenn man ein Persistent Volume definiert, hat man eine Wahl zwischen vielen verschiedenen
Arten von Persistent Volumes, die innerhalb von Kubernetes bereitgestellt werden können.
Dies ist von der angeschlossenen Storage-Infrastruktur abhängig und lässt sich grob in vier
Typen aufteilen: Local-, Netzwerk-, Block- und Cloud-Storage.

• Local Disk
• Netzwerk: NFS, azureFIle
• Block: Fibre Channel, iSCSI
• Cloud: z.B. awsElasticBlockStore, azureDisk, gcePersistentDisk

Die Art des verwendeten Storage ist von der Use Case und / oder Infrastruktur abhängig.

Hier finden Sie eine vollständige Liste: https://kubernetes.io/docs/concepts/storage/persistent-
volumes/#types-of-persistent-volumes

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

61

Persistent Volume Claim

Der Persistent Volume Claim (PVC) ist eine Anforderung des Benutzers an den Cluster, ihm
eine bestimmte Menge an Speicherplatz zu gewähren.

Wenn ein Persistent Volume Claim gestellt wird, müssen dabei eine Reihe von Eigenschaften
definiert werden: die Größe des PersistentVolumes, den Zugriffsmodus (Access Mode) für
dieses PersistentVolumes, die Speicherklasse (Storage Class) usw. Der Zugriffsmodus
definiert, wie das Volume genutzt werden kann.

Wenn ein geeignetes Persistent Volume gefunden wird, das den gestellten Anforderungen
entspricht, wird es an den PVC gebunden (Bindung) und bereitgestellt. Wenn kein passendes
PV vorhanden, kann in Systemen mit dynamischer Provisionierung (s. unten) automatisch ein
neues PV erzeugt werden, das den Anforderungen aus dem PVC entspricht.

PVC-Beispiel

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: mein-pvc

 namespace: mein-namespace

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 10Gi

 storageClassName: meine-speicherklasse

Access Modes

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

62

Persistent Volumes und Persistent Volume Claims stehen vier verschiedenen Zugriffsmodi zur
Verfügung:

• RWO – ReadWriteOnce bedeutet, dass ein Node das Volume sowohl für den Lese-
als auch für den Schreib-Zugriff mounten kann.

• RWX – ReadWriteMany bedeutet, dass mehr als ein Node das Volume für den
Lese-Schreib-Zugriff mounten kann.

• ROM – ReadOnlyMany bedeutet, dass mehr als ein Node das Volume für den
reinen Lesezugriff mounten kann.

• RWOP – ReadWriteOncePod bedeutet, dass ein Volume nur von einem einzelnen
Pod im gesamten Cluster mit Lese-Schreib-Zugriff gemountet werden kann. Die
Option ist nur ab Version 1.22 und nur für PVC verfügbar.

Es ist zu beachten, dass die zugrundeliegende Speicherkomponente immer noch ihre eigenen
Eigenschaften haben kann, die im Widerspruch zu den konfigurierten Einstellungen stehen
können.

Static Provisioning
Bei der statischen Bereitstellung wird das Persistent Volume durch einen Administrator vorab
erstellt. Dabei legt der Administrator die Spezifikationen (Zugriffsmodi, Größe, Name usw.)
fest.

Dynamic Provisioning
Bei einer dynamischen Bereitstellung das Persistent Volume zeitgleich mit der Erstellung von
PVC angelegt. Dies passiert in der Regel, wenn die verfügbaren statischen PVs nicht mit der
PVC-Spezifikation übereinstimmen. In diesem Fall basiert die Bereitstellung anhand von
vordefinierten Storage Klassen.

Storage Class
Das Objekt Storage Class bietet die Möglichkeit bestimmte Eigenschaft wie z.B. Leistung,
Größe oder Zugriffsart, sowie die infrastrukturspezifischen Parameter zu definieren. Innerhalb
des StorageClass werden auch die Schritte definiert (reclaim policy) was mit einem dynamisch
zugewiesenen PersistentVolumes geschehen soll, sobald die PVC gelöscht ist.

Storage Lifecycle

Den gesamten Lebenszyklus der PVs/PVCs können wir in drei Phasen aufteilen: Binding, Using
und Reclaim. Hier ist eine grobe Beschreibung der einzelnen Schritte.

Provisioning - die erste Phase ist bereits oben erklärt und beinhaltet eine statische oder eine
dynamische Provisionierung.

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

63

Binding - ist ein Prozess der Zuordnung eines PersistentVolumeClaim zu einem
PersistentVolume für den weiteren Zugriff von einem Pod. Aus technischer Sicht passiert
Folgendes: wenn der PersistentVolumeClaim erstellt wird, findet ein Control Loop diesen
PersistentVolumeClaim und versucht, ein passendes PersistentVolume zu finden. Dies kann
entweder statisch oder dynamisch passieren. Wenn der Control Loop kein PersistentVolume
finden kann, bleibt der Pod, welcher diesen PersistentVolumeClaim verwenden wollte, in dem
Pending-Zustand, und zwar so lange bis die passende Ressource verfügbar wird.

Using - Das Volume steht dem Pod während seiner Lebensdauer zur Verfügung.

Reclaiming - in dieser Phase wird festgelegt, was mit dem Volume geschehen soll. Sie haben
eine Wahl zwischen zwei möglichen Optionen Retain und Delete.

Retain - dem zugrundeliegenden Storage wird mitteilt, dass der Volume noch manuell
zurückgefordert werden kann.

Delete - die Phase ist selbst erklärend. Diese Option wird überwiegend in dynamischen
Provisioning Szenarien verwendet.

Autoscaling
Was ist Skalierung?

Unter Skalierung versteht man im Allgemeinen die Vergrößerung oder Verkleinerung
vorhandener Ressourcen.

Es gibt zwei Arten der Skalierung:

Vertikale Skalierung (Scaling up) - die vertikale Skalierung wird durch das Hinzufügen
zusätzlicher Hardware-Ressourcen erreicht. Wie im unteren Bild dargestellt, wurde der
vorhandene Server mit mehr CPU und RAM ausgestattet. Auf diese Weise können sowohl
physische als auch virtuelle Ressourcen erweitert werden.

Was ist Kubernetes Autoscaling?

Kubernetes Autoscaling ermöglicht eine dynamische Anpassung an steigenden oder
sinkenden Ressourcenbedarf durch horizontale und vertikale Skalierung der einzelnen
Ressourcen.

Im Gegensatz zum „Legacy“ Scaling orientiert sich Kubernetes Autoscaling nicht an der
Skalierung von physischen oder virtuellen Maschinen, sondern muss eine andere

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

64

Abstraktionsebene bedienen. Beim Kubernetes Autoscaling liegt der Fokus auf den
Applikationen und den architekturbedingt darunter liegenden Pods.

Da die Kubernetes-Infrastruktur hauptsächlich in der Cloud eingesetzt wird, hilft Kubernetes
Autoscaling bei der Kostenoptimierung, indem ein Cluster dynamisch nach oben und unten
skaliert wird, je nach aktuellem Bedarf.

Autoscaling-Funktionen für Kubernetes

In Kubernetes gibt es drei Autoscaling-Funktionen.

• Vertical Pod Autoscaler (VPA) - erhöht oder reduziert CPU- und Speicher-
Ressourcen in Pod

• Horizontal Pod Autoscaler (HPA) - fügt neue Pods hinzu oder entfernt diese
• Cluster Autoscaler - kann Clusterknoten hinzufügen oder entfernen

Vertical Pod Autoscaler (VPA)

Wie bereits erwähnt, basiert VPA auf dem gleichen Prinzip wie die „klassische“ vertikale
Skalierung, d.h. das Hinzufügen oder Entfernen von Ressourcen (z.B. CPU oder Speicher) zu
oder von einem Pod. Man könnte VPA als eine Weiterentwicklung der in Kubernetes üblichen
Requests und Limits (s. unten) betrachten, allerdings mit einem wesentlichen Unterschied: Die
Requests werden automatisch auf Basis einer Verhaltensbeobachtung (ca. 5 Minuten) und
einer anschließenden Bewertung aktualisiert.

Für die „technische“ Umsetzung ist ein Kubernetes-Objekt namens
VerticalPodAutoscaler zuständig, zu dem noch drei Komponenten gehören:

Der Recommender ist die zentrale Komponente des VPA. Der Recommender dient zur
Überwachung des historischen und aktuellen Ressourcenverbrauchs und zur Berechnung der
daraus resultierenden CPU- und Speicheranforderungen.

Link: https://github.com/kubernetes/autoscaler/blob/master/vertical-pod-
autoscaler/pkg/recommender/

Der Updater ist für die Umsetzung der vom Recommender berechneten Empfehlungen
verantwortlich. Der Updater erstellt neue Pods und beendet Pods, die aktualisiert werden
müssen. Die eigentliche Aktualisierung wird jedoch vom Vertical Pod Autoscaler Admission
Plugin durchgeführt.

https://github.com/kubernetes/autoscaler/blob/master/vertical-pod-autoscaler/pkg/recommender/
https://github.com/kubernetes/autoscaler/blob/master/vertical-pod-autoscaler/pkg/recommender/

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

65

Horizontal Pod Autoscaler (HPA)

Wie auf dem Bild zu sehen ist, unterscheidet sich HPA von VPA durch die Erhöhung oder
Reduzierung der Pod-Anzahl und nicht durch die Anpassung deren Eigenschaften.

HPA ist wesentlich flexibler als VPA, da durch das Hinzufügen / Entfernen von Pods eine
kosteneffiziente und performante Umgebung gebaut werden kann. Ein weiterer, eher
hypothetischer Vorteil ist die Möglichkeit, die Performance-Engpässe im Bereichen Storage
I/O und Netzwerk abzufedern. Wobei die Entscheidung weiteren Pods zu starten, wird
ausschließlich auf Basis von CPU- und Arbeitsspeicher-Metriken getroffen. Die realen
Engpässe bei IOPS, Netzwerk und Storage werden nicht berücksichtigt.

Einzige Voraussetzung für den Einsatz von HPA ist, dass die verwendeten Applikationen unter
Berücksichtigung der horizontalen Skalierung entwickelt wurden und die parallele Ausführung
mehrerer Instanzen unterstützen.

HPA Komponenten

Bei dem Aufbau vom HPA werden mehreren Komponenten zum Einsatz kommen: HPA,
cAdvisor, Metrics API, API Service und Mertics Server.

Auf jedem Node ist eine Komponente namens cAdvisor eingebaut (als Teil von kubelet) und
dient zur Überwachung der Ressourcenauslastung der laufenden Container. cAdvisor sammelt
mehrere interne Metriken in einem Node, die aber von keinem Tool genutzt werden.

Link: https://github.com/google/cadvisor

Die vom cAdvisor gesammelten Metriken werden von einem weiteren Tool namens Mertics
Server aggregiert. Der Metrics Server wird über die Metrics API für HPA und VPA zur
Verwendung bereitgestellt.

Link: https://github.com/kubernetes/metrics

Der Metrics Server ist eine separate Komponente und wird bei der Cluster-Installation nicht
mitinstalliert. Für die Installation müssen einige Voraussetzungen erfüllt sein. Der Metrics
Server läuft als Pod im Kubernetes-Cluster und sammelt in regelmäßigen Abständen
(standardmäßig 60 Sekunden) die Metriken (CPU und Speicher) der Nodes. Die gesammelten
Metriken werden nicht aufbewahrt und sind zur sofortigen Verwendung bestimmt.

https://github.com/google/cadvisor
https://github.com/kubernetes/metrics

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

66

Link: https://github.com/kubernetes-sigs/metrics-server

HPA-Versionen

Es gibt zwei HPA-Versionen: v1 und v2. Die erste HPA-Version (autoscaling/v1) hat eine sehr
begrenzte Konfigurationsmöglichkeit und ist ausschließlich auf der durchschnittlichen CPU-
Auslastung basiert.

Die zweite Version (autoscaling/V2beta1 und autoscaling/V2beta2) unterstützt die
Verwendung von mehreren Metriken. Diese Metriken können auch vom Benutzer definiert
oder aus externen Quellen stammen.

Cluster Autoscaler

Cluster Autoscaler ermöglicht die automatische Skalierung des Clusters selbst, indem die
Anzahl der Knoten erhöht oder verringert wird.

Es kann die Situation eintreten, dass trotz dynamischer Ressourcenverteilung alle
zugewiesenen Ressourcen erschöpft sind und keine weiteren Pods auf den vorhandenen
Worker Nodes gestartet werden können. In diesem Fall gibt es nur eine Möglichkeit,
bestehende Engpässe zu beseitigen: die Anzahl der Worker Nodes zu erhöhen.

Im Gegensatz zu den beiden anderen Skalierungsmethoden (VPA/HPA) ist der Cluster
Autoscaler kein Bestandteil des Kubernetes Clusters, da Kubernetes keine Mechanismen für
das automatische Anlegen und Entfernen von virtuellen Maschinen besitzt. Der Cluster
Autoscaler ist eine „typische“ Komponente von Managed Kubernetes bei Cloud Providern.

https://github.com/kubernetes-sigs/metrics-server

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

67

Requests und Limits

Die Requests / Limits sind optionale Konfigurationsmöglichkeiten, die zur Optimierung der
Ressourcennutzung verwendet werden können. Requests / Limits müssen nicht konfiguriert
werden. Je nach Anwendung oder Situation können die Requests / Limits die Stabilität der
einen oder anderen Anwendung positiv oder negativ beeinflussen. Diese Einstellung ist als
zweischneidiges Schwert zu betrachten.

Requests

Die Requests dienen zwei Zwecken, erstens einen geeigneten Knoten mit ausreichender
Kapazität zu finden und zweitens die Gesamtmenge der benötigten Ressourcen zu berechnen.

Die Requests definieren die minimale Menge an RAM/CPU, die für den Container benötigt
wird. Wie bereits erwähnt, entscheidet der Kube Scheduler anhand dieser Informationen, auf
welchem Worker Node der Pod gestartet werden soll und reserviert die angeforderte Menge
an Ressourcen für diesen Container, so dass diese garantiert zur Verfügung stehen.

Wenn auf keinem einzigen Worker Node die verlangten Ressourcen vorhanden sind, wird der
Pod erstmal in einen Pending-Zustand versetzt. Erst wenn die angefragten Ressourcen wieder
vorhanden sind, wird der Pod ausgeführt.

Limits

Die Limits sorgen dafür, dass der Container seinen CPU- oder RAM-Verbrauch in Grenzen hält
und keine zusätzlichen Ressourcen als vordefiniert, für sich beansprucht, auch wenn solche
Ressourcen physikalisch vorhanden sind.

Wenn die Ressource die durch die Limits festgelegte Grenze erreicht, werden bestimmte
Ereignisse ausgelöst, die unterschiedliche Auswirkungen auf die CPU und den Speicher haben.
CPU-Throttling und Out-of-Memory-Kills sind die bekanntesten.

Hier ein kurzes Beispiel dafür, wie Sie Requests und Limits für eine Container-Spezifikation
festlegen können:

apiVersion: v1

kind: Pod

metadata:

 name: busybox-app

spec:

 containers:

 - name: busybox

 image: busybox

 resources:

 requests:

 memory: "128Mi"

 cpu: "250m"

 limits:

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

68

 memory: "256Mi"

 cpu: "500m"

Einheiten

Die CPU-Anforderungen werden in Millicores (auch milliCPU genannt) („m“) oder in Cores
festgelegt, wobei 1000 Millicores = 1 vCPU oder 1 physische CPU Core entspricht. Der
minimale Wert beträgt 0.1 Core.

250m auf dem oberen Bespiel bedeutet, dass die ¼ einer CPU aufgefordert wurde und die
Limitierung auf 500m gesetzt ist.

Die Memory-Anforderungen werden in Bytes gemessen. Für die Eingabe der Speicher-
Ressourcen können unterschiedlichen Suffixe (einstellige und zweistellige) verwendet werden
(z.B. Mi bedeutend Mebibyte und entspricht 1,04858 MB, oder 128 MebiByte ist gleich zu 135
Megabyte (MB)).

CPU-Throttling

CPU-Throttling bedeutet, dass die CPU-Nutzung eines Containers gedrosselt wird, wenn er
sein CPU-Limit überschreitet. Das CPU-Throttling wird durch sogenannte "Throttling-
Perioden" geregelt. Die "Throttling-Periode" ist ein Mechanismus zur Überprüfung der CPU-
Nutzung des Containers in regelmäßigen Abständen (standardmäßig 100ms). Aus technischer
Sicht sind die cgroups (Linux-Funktionen) die CPU-Drosselung zuständig.

Wenn z.B. ein Container ein Limit von "500m" hat, was 50% eines CPU-Kerns entspricht. Das
bedeutet, dass dieser Container in jeder Throttling-Periode (100ms) bis zu 50ms CPU-Zeit
verbrauchen (ebenfalls 50%) darf. Hätte ein Container ein Limit von "300m" (30% eines CPU-
Kerns), so hätte er Anspruch auf 30ms CPU-Zeit.

1. Für einen Container reservierter CPU-Anteil.
2. Maximale CPU-Auslastung für den Container.
3. Grenzwert, bei dem das CPU-Throttling beginnt.

Die potentiellen Probleme des CPU-Throttling lassen sich anhand des folgenden Beispiels noch
besser verdeutlichen:

Eine Funktion einer Applikation benötigt normalerweise 80ms CPU-Zeit, um ihre Tasks
abzuschließen.

• CPU-Limit: 500m
• Throttling-Periode: 100ms

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

69

• Verfügbare CPU-Zeit pro Periode: 50ms (50%)

Ohne CPU-Limit hätte der Container die 80ms CPU-Zeit-Aufgabe direkt abgearbeitet.

Andernfalls werden die CPU-Limits wie folgt auswirken:

• Erste Periode (100ms): 50ms Arbeitszeit und wird dann gedrosselt.
• Zweite Periode (nächste 100ms): die restlichen 30ms werden abgearbeitet.

Die CPU-Limits können zu Leistungseinbußen und längeren Antwortzeiten der Anwendung
führen. Je mehr Iterationen eine Anwendung benötigt, desto schlechter sind die Performance-
Werte. Dabei spielt es keine Rolle, ob die CPU des Nodes grundsätzlich ausgelastet ist oder
nicht.

Out-Of-Memory (OOM)

Wenn ein Container mehr Speicher (RAM) anfordert, als ihm durch Limit zur Verfügung steht,
wird er durch den OOM-Killer beendet und neu gestartet. Solche unerwarteten Neustarts
können zu Instabilität und Datenverlust der Anwendung führen.

1. Maximale Menge an Memory, die für den Container reserviert ist
2. Maximaler Memory-Verbrauch für den
3. Out-of-Memory greift ein und startet den Pod

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

70

Resource Quotas

Die Verwendung von Resource Quotas bietet die Möglichkeit, die Nutzung der CPU- und
Speicher-Ressourcen auf Namespace-Ebene einzuschränken. Diese Technologie (Kubernetes
Objekt: ResourceQuota) ist für den UseCase vorgesehen, wenn unterschiedlichen Teams einen
Kubernetes Cluster teilen. So wird die angemessene Verteilung ermöglicht. Grundsätzlich
können Sie mit Resource Quotas auch die Nutzung den anderen Objekten verwenden. Dies
wird aber in diesem Betrag nicht behandelt.

Hier ist ein Bespiel der ResourceQuotas- Konfiguration, welche für jeden Namespace erstellt
werden muss:

apiVersion: v1
kind: ResourceQuota

metadata:
 name: team-alpha

spec:
 hard:
 requests.cpu: 2

 requests.memory: 2Gi
 limits.cpu: 4

 limits.memory: 4Gi
 requests.cpu: 2 -
 requests.memory: 2Gi
 limits.cpu: 4

 limits.memory: 4Gi

requests.cpu / requests.memory - die Summe aller CPU- / Sprecher-Anforderungen darf nicht
höher sein als der hier definierte Wert.

limits.cpu / limits.memory - die hier eingegebene Grenzwerte dürfen nicht überschritten
werden.

https://www.kreyman.de/images/Tanzu/CPU-Sizing/Kubernetes_Resource_Quotas.png

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

71

Falls die Gesamtkapazität eines Clusters kleiner ist als die Summe aller Kontingente der
Namespaces, kann es zu Ressourcenkonflikten kommen, die nach Prinzip „First Come First
Serve“ gelöst werden.

Die Verwendung von ResourceQuota kann sowohl gemeinsam mit den Requests/Limits auf der
Pod-Ebene als auch separat genutzt werden.

Quality of Service (QoS)

In Kubernetes gibt es drei Arten von Quality of Service (QoS) Klassen für Pods, die einen
direkten Bezug zu unserem Thema haben.

• Guaranteed
• Burstable
• BestEffort

Die Zuordnung der Pods zu einer oder anderen QoS-Klasse wird durch die definierten Requests
und Limits sowohl für die CPUs als auch für den Speicher bestimmt.

Guaranteed

Die Zuordnung zu dieser Klasse erfolgt nur, wenn für jeden Container sowohl Requests als
auch Limits für CPU/Speicher konfiguriert sind. Die Werte der Requests müssen mit den Limits
übereinstimmen. Wenn dies der Fall ist, wird diesen Pods die höchste Priorität bei der
Ressourcenzuteilung garantiert.

Burstable

Zu dieser Klasse gehören Pods, bei denen mindestens ein Container ungleiche Request oder
Limits für CPU/Speicher hat, oder bei denen Request, aber keine Limits gesetzt sind. CPU
Throttling kann für Container mit einem definierten Limit angewendet werden. Diese Pods
haben eine mittlere Priorität und können zusätzliche Ressourcen nutzen, aber nur wenn diese
verfügbar sind.

BestEffort

BestEffort ist das rechtlose Mitglied der QoS-Klassen. Pods, für die weder Requests noch Limits
(für CPU und Speicher) definiert sind, werden der Klasse BestEffort zugeordnet. Diese Pods
haben die niedrigste Priorität und werden CPU-mäßig als die letzten bedient und sind die
ersten Kandidaten, die vom OOM Killer des Betriebssystems beendet werden.

https://kubernetes.io/docs/concepts/workloads/pods/pod-qos/#guaranteed
https://kubernetes.io/docs/concepts/workloads/pods/pod-qos/#burstable
https://kubernetes.io/docs/concepts/workloads/pods/pod-qos/#besteffort

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

72

Secrets

Kubernetes Secrets ist eine Ressource in Kubernetes, die dient zur Speicherung von
vertraulichen Informationen wie Passwörtern, Schlüsseln und Zertifikaten verwendet wird.
Secrets können von Pods, Containern oder anderen Kubernetes-Objekten wie Deployments
und Services verwendet werden, ohne dass die vertraulichen Informationen direkt im YAML-
Manifest gespeichert werden müssen.

Die Verschlüsselung der Kubernetes Secrets erfolgt intern in Kubernetes und benötigt keine
externe Komponente. Die Secrets werden standardmäßig in base64 kodiert (s. Base64
Sicherheitsbedenken), was jedoch keine Verschlüsselung darstellt, sondern nur eine einfache
Kodierung. Die Kubernetes Secrets werden im etcd-Cluster gespeichert und vom API-Server
verwaltet.

Secrets können in Pods über Umgebungsvariablen oder Volumes gemountet werden. Wenn
Secrets als Umgebungsvariablen verwendet werden, werden die vertraulichen Informationen
in Umgebungsvariablen im Pod ausgeführt. Wenn Secrets als Volumes verwendet werden,
werden die vertraulichen Informationen in einer Datei gespeichert, die im Pod als Volumes
gemountet ist.

Secrets können auch mit Labels und Annotations versehen werden, um eine einfache Suche
und Organisation zu ermöglichen. Secrets können auch aktualisiert und gelöscht werden, um
sicherzustellen, dass vertrauliche Informationen auf dem neuesten Stand und sicher bleiben.

Offizielle Dokumentation: Secrets | Kubernetes

Arten von Secrets

Es gibt zwei Arten von Secrets in Kubernetes: generische Secrets und Secrets für Image-
Repositories (Container-Registry). Generische Secrets werden für allgemeine vertrauliche
Informationen wie Passwörter und Schlüssel verwendet, während Secrets für Image-
Repositories verwendet werden, um Anmeldeinformationen für die Verbindung zu einer
Container-Registry zu speichern. In diesem Fall werden Secrets verwendet, um den
Benutzername und Passwort oder Token in einem Kubernetes-Cluster zu speichern, damit
Pods oder Deployments auf das private Repository zugreifen können.

Speicherung der Secrets

Folgende Möglichkeiten können verwendet werden, um eine sichere Speicherung der Secrets
zu gewährleisten:

Secret Encryption Config

In diesem Fall werden die Secrets mit einem symmetrischen Schlüssel verschlüsselt, der in
einem separaten Secret gespeichert wird. Dies erhöht die Sicherheit, da der Schlüssel selbst
verschlüsselt ist und nur von autorisierten Benutzern entschlüsselt werden kann.

https://kubernetes.io/docs/concepts/configuration/secret/

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

73

Verwendung von Secrets-Management-Tools

Durch die Verwendung von Vault können Kubernetes-Cluster einheitliche Methoden zur
Verwaltung von Secrets implementieren und die Sicherheit von Secrets erhöhen. Wenn von
Vault die Rede ist, ist eigentlich HashiCorp Vault gemeint.

HashiCorp Vault ist eine zentrale Plattform zur Verwaltung von Secrets, wie z.B. Passwörtern,
API-Schlüsseln, Tokens und Zertifikate, sowie zur sicheren Generierung von Zufallszahlen und
-werten.

Die Secrets werden in Vault in sogenannten "Secret Engines" gespeichert, die je nach Bedarf
konfiguriert werden können. Beispielsweise kann ein Secret Engine für Passwörter und ein
anderer für Tokens erstellt werden. Für jede Art von Secret gibt es einen eindeutigen Pfad,
unter dem die Secrets innerhalb des Secret Engines abgelegt werden.

Base64 Sicherheitsbedenken

Die Base64-Kodierung ist ein Verfahren zur Kodierung von Binärdaten in Textdaten und
umgekehrt. Die Codierung ist keine Verschlüsselung und kann relativ einfach rückgängig
gemacht werden. Das bedeutet, dass jemand, der Zugriff auf die Secret-Datei hat, die Base64-
kodierten Informationen ohne viel Aufwand entschlüsseln kann. Es ist daher wichtig, sensible
Informationen wie Passwörter und Zugangsdaten in Kubernetes Secrets durch
Verschlüsselung zu schützen, bevor sie gespeichert oder übertragen werden.

https://www.vaultproject.io/

 Überblick über die Architektur von Kubernetes - Anatoli Kreyman

74

KCNA – Prüfung

Die KCNA (Kubernetes and Cloud Native Associate) Prüfung ist eine
Zertifizierung, die von der Linux Foundation angeboten wird. Es werden
Grundkenntnisse der Kubernetes-Technologie und der Kubernetes-Cluster-
Architektur abgefragt.

Inhalt der Zertifizierung (offizielle Information)

• Die Zertifizierung bestätigt konzeptionelles Wissen über das gesamte Cloud-Native-
Ökosystem, insbesondere über Kubernetes.

• Sie bereitet Kandidaten darauf vor, mit Cloud-Native-Technologien zu arbeiten und
weitere CNCF-Zertifizierungen wie CKA, CKAD und CKS anzustreben.

Kompetenzbereiche (offizielle Information)

• Kubernetes-Grundlagen (46%): Ressourcen, Architektur, API, Container, Scheduling.

• Container-Orchestrierung (22%): Grundlagen, Laufzeit, Sicherheit, Netzwerk, Service
Mesh, Speicher.

• Cloud-Native-Architektur (16%): Autoscaling, Serverless, Community und
Governance.

• Cloud-Native-Beobachtbarkeit (8%): Telemetrie, Observability, Prometheus,
Kostenmanagement.

• Cloud-Native-Anwendungsbereitstellung (8%): Grundlagen, GitOps, CI/CD.

Prüfungsdetails

• Es gibt keine spezifischen Voraussetzungen
• Die Prüfung ist ein online überwachtes, Multiple-Choice-Examen.
• Die Zertifizierung ist drei Jahre gültig
• Die Prüfungsdauer beträgt 90 Minuten
• Der Preis für die Prüfung beträgt 250 USD

Offizielle Information:

https://training.linuxfoundation.org/certification/kubernetes-cloud-native-associate/

https://docs.linuxfoundation.org/tc-docs/certification/frequently-asked-questions-kcna

https://training.linuxfoundation.org/certification/kubernetes-cloud-native-associate/
https://docs.linuxfoundation.org/tc-docs/certification/frequently-asked-questions-kcna

	Einführung
	Bildnachweise:
	Hinweis / Disclaimer
	Was ist Kubernetes?
	VM vs. Container oder OS Isolierung vs. Applikation Isolierung
	Microservices
	Verwendungsszenarien
	Einsatzszenarien

	Kubernetes Vorteile
	Flexibilität
	Skalierbarkeit / Effizienz
	Ausfallsicherheit
	Deklarative Konfiguration
	Self-Healing
	Ökosystems

	Kubernetes Nachteile
	Kosten und Komplexität
	Nicht immer sinnvoll

	Kubernetes-Architektur Diagramm
	Control Plane
	Kubernetes API-Server
	ETCD
	kube-controller-manager
	kube-scheduler

	Worker Nodes
	kubelet
	Kube-proxy
	IP-Tables-Modus
	IPVS-Modus
	iptables-Modus

	Im iptables-Modus programmiert Kube-Proxy iptables-Regeln auf jedem Node, um den Netzwerkverkehr von Services zu den zugehörigen Endpunkten (Pods) weiterzuleiten. Dabei werden die von Kubernetes verwalteten Endpoints bzw. Endpoint Slices verwendet, um...
	Container Runtime

	API Server
	RESTful API
	kubectl api-resources

	Authentifizierung, Autorisierung, Validierung und Zulassung
	Authentifizierung
	Autorisierung
	Validierung
	Zulassung

	Informationsaustausch mit ETCD
	Lesen von Daten
	Schreiben von Daten
	Beobachten von Änderungen

	Skalierbarkeit, Erweiterbarkeit, Versionskontrolle
	Skalierbarkeit
	Erweiterbarkeit
	Versionskontrolle

	API Objects
	API Groups
	Core-API-Groups
	Named API-Groups
	API Resource Location – Beispiele

	API Versioning
	Alpha
	Beta
	Stable

	HTTP-Antwortcodes vom API-Server

	Namespaces
	Isolierung
	Ressourcenverwaltung
	Zugriffssteuerung
	Namenstrennung
	Vordefinierten Namespaces

	Labels
	Beispiel eines Kubernetes Labels:

	Annotations
	Beispiel einer Kubernetes Annotations:
	Labels vs. Annotations

	Workload-Objekte
	ReplicaSet
	Deployment
	RollingUpdate – Parameter
	kubectl Befehle für das Deployment

	DaemonSet
	StatefulSet
	Headless Service

	Jobs
	CronJobs
	Healthcheck-Objekte
	Liveness Probe
	Readiness Probe
	Startup Probe

	Taints und Tolerations
	Taints und Tolerations - technische Umsetzung
	Taint-Optionen
	Typische Anwendungsfälle

	NodeSelector
	Node Affinity
	Pod Affinity / Pod Anti-Affinity
	Pod Affinity
	Pod Anti-Affinity

	Kubernetes Netzwerk
	CNI-Plugin
	Service-Discovery
	Network-Policies
	Pod-to-Pod-Kommunikation
	Netzwerk-Arten im Kubernetes Cluster
	Node Network
	Pod Network / Cluster Network
	Service Network

	Kubernetes Ingress
	Name-based Virtual Hosts
	Path-based Routing
	TLS Termination
	Service API vs. Ingress
	Open Source Ingress Controller
	Ingress Beispiel

	Kubernetes Egress
	Egress Beispiel

	Kubernetes DNS
	Kubernetes CoreDNS
	Kubernetes Netzwerk-Plugins / Container Networking Interface (CNI)

	Service-Typen
	ClusterIP
	Beispiel ClusterIP

	NodePort
	Beispiel NodePort

	LoadBalancer
	ExternalIPs
	Beispiel ExternalName
	NodePort vs. ExternalIPs

	ExternalName
	Beispiel ExternalName

	Kubernetes Storage
	Vol​umes
	Persistent Volume
	Persistent Volume Claim
	PVC-Beispiel

	Access Modes​
	Static Provisioning
	Dynamic Provisioning
	Storage Class
	Storage Lifecycle

	Autoscaling
	Was ist Skalierung?
	Was ist Kubernetes Autoscaling?
	Autoscaling-Funktionen für Kubernetes
	Vertical Pod Autoscaler (VPA)​
	Horizontal Pod Autoscaler (HPA)
	HPA Komponenten
	HPA-Versionen

	Cluster Autoscaler
	Requests und Limits
	Requests
	Limits
	Einheiten

	CPU-Throttling
	Out-Of-Memory (OOM)

	Resource Quotas
	Quality of Service (QoS)
	Guaranteed
	Burstable
	BestEffort

	Secrets
	Arten von Secrets
	Speicherung der Secrets
	Secret Encryption Config
	Verwendung von Secrets-Management-Tools

	Base64 Sicherheitsbedenken

	KCNA – Prüfung
	Inhalt der Zertifizierung (offizielle Information)
	Kompetenzbereiche (offizielle Information)
	Prüfungsdetails

