Uberblick Uiber die Architektur
von Kubernetes

Anatoli Kreyman

EinfUhrung

Das Buch "Uberblick Giber die Architektur von Kubernetes" ist ein umfassender
Leitfaden, der ein tiefes Verstandnis der Architektur und Funktionsweise von
Kubernetes vermitteln soll.

Das vermittelte Wissen und ein Minimum an praktischer Erfahrung sind vollkommen
ausreichend, um die Kubernetes Basiszertifizierung (Kubernetes and Cloud Native
Associate) zu erlangen.

Bildnachweise:

Alle hier verwendeten Diagramme wurden von mir selbst erstellt und kénnen von lhnen
verwendet werden.

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

Inhaltsverzeichnis

T) {01V 0T =SSP 2
Was iSt KUBEINETES?c.ooiiiii ettt st sttt sse e st st et e eteenneens 8
VM vs. Container oder OS Isolierung vs. Applikation [SOlI@rUNgcccvveeieiieiiiciiie e, 8
Yol Lo =T Yol TP PRPRO 8
VErWENAUNESSZENAMENuvvviiiieeeeeeeiitiieeeeeeeeeeittrreeeeeeeeesiastsreeeeaeesaaastssaseeasssasasstssssesessssasssrasseseessensnes 9
EINSAtZSZENAIIEN Liiiiiiiiiiiiiii e s 9
KUDEINELES VOITRIIE ... ettt st st sb e 9
FIEXIDITIEAT ..ttt sttt e e bt esae e st e et e bt e b e saeesanesane e 9
SKAIEIDAIKEIT / EffIZIENZ ..ottt et e e e e s e e et e e e esesaaaaaeeeeeeesesasaeseresesssanannn 9
AUSTAIISICREINEIT ..t e st s e e be e e sare e sne e e sareeeas 9
Deklarative KONFIGUIAtiONccuiiiiiieee ettt e e e e e e e s aa e e e e s nba e e e e naeee s 9

Y13 1111 Y= USSP 10

(0] Co TS 4= 1 - 10
Kubernetes NaCht@Ileoo it st e s ne e e sareeen 10
Kosten und KOMPIEXITALeeiiiiiieee et e e e e e e et e e e e e e e s e nerae e e e e e e e sennerenees 10
NIChT IMMEr SINNVOIL.....iiiiiiie ettt e nne e 10
Kubernetes-Architektur DIagrammi.............coocuiiiiiiiiii e re e e e e e e sbae e s e eabaee e e eaeees 11
CONTFOI PIANE..... ..ottt et ettt e et e e s bt e e ae e e s abeeebeeesabeesabeeeameeesareeennnens 12
KUDEINETES API-SEIVET ... ettt ettt st e e st e st e e sate e s bt e e sns e e sareesneeesareeeanes 12
I 12
QUL T=ReleT oY o] | L= ol a ¥ T P-4 Y USRS 12
KUDE-SCREAUIET ...ttt sttt sttt e b e bt e s e st eneeeneenneens 13
WOTKEE NOAESottt sttt e st e et e e st e s bt e e sab e e s abe e e emteesabeeessneesareesnenesareesanes 13
(0] o 1= =] PP P PP URRTOUSPRP 13
U] o1 o o)Y USSP 13
IP-TAbBIES-IMOTUSc.eeeeuteeieesiee ettt ettt st st s bt e bt e b e beesmeesmeeemeeeneeneens 14
IPVS-IMOTUS .ottt sttt ettt e b e s bt sat e st e s bt e bt e b e e s beesmeeemeeenseenseereens 14

oo [TUT 1 G Y T o [V USSR 14
CoNtaiNer RUNTIME ...ttt e s e e s e e s e e e s nnne e e s annneeesannnenens 14
APESEIVEEooiiiiiiiiiiiiiii e e e s s e e s a e e s sans 15
RESTIUL AP ..ttt e s bt st ettt et e s bt e shtesaeesabe e bt e beesseesmeeemeeenneenneens 15
Q0L oT=Ton 1 BT o B T -Yo 10 ol TR 16
Authentifizierung, Autorisierung, Validierung und Zulassung............cccoceeeeeuieeeeciiieeeecciee e 16
AUTNENTTIZIEIUNG ...ttt e ettt e e e et e e e e bae e e eeabeeeeenraeaeenssaeaeennreeans 16
AAUTOTISTOIUNE . s sssnnnn 18

Uberblick Giber die Architektur von Kubernetes - Anatoli Kreyman

RV 1o 1T VT o =SSR 18

40| =13 U o -SRI 18
INformationsaustauSCh MIT ETCDc..eiiiiiiiiieiiee ettt st sttt et e s e s me e e s 18
LESEN VON DABN it e s e e e e e e e e e e e e 18
SChreibeN VON Datenooueiiiiiieiee ettt et e e s b e e ne e e sareesneeesaneeens 18
Be0baChten VON ANGEIUNGENc.vivieieieeiceeeectee ettt ettt st e teas et eteseete e esenes 18
Skalierbarkeit, Erweiterbarkeit, Versionskontrolle ... 18
SKANEIDAIKEIT.....ee ittt e s bt e e sae e e sabe e e nre e sareesneeesaneeeas 19
ErWeiterDarkeit.....oo e e e s 19
VEISIONSKONTIOIIE ...ttt et b e b s e e 19

Y 0] 1=T ot £ SRR 19
FAN o I C 1o TU] o X PP PPPPPPPPPPPPPPRE 19
(0] £ AN o] €] ¢ o ¥ o LSRR 20

N T =T I o B G ¢ oYU o 1RSSR 20

AP| Resource LoCation — BEISPIEIEccccuiiiiiciiiie ettt e e e e e e e araee s 20

FAN Y =T Y To T [T = 2P PRSP PPPPPPPPPPPPPRE 21
7N 1] o - SRR 21
271 = PR TRSPOP 21

R}] o] L O O POV U RO P PR POTTOPRRTRPO 21
HTTP-ANtwortCodes VOM API-SEIVETco.uiiiiriieiieiieeitte ettt ettt sttt sttt enne e 22

[\ E T3 1T o - 1ol L 23
(o] FT=T o U oY - USRS 23
RESSOUICENVEIWAITUNE .ottt et e e e e e e e et e e e e e e e seanbteaeeeeeesennnnsraeaeaaanas 24
UGS ST EUBTUNG. . eeeeeitiee ettt ettt ettt e e ettt e e e ettt e e e e taaeeeeabeee e e abaeaeeessaeeeesbaeeeeassseeeeantseeeeansseeasansees 24

N QM BN ST ENNUNE ... it s ssnen 25
VOrdefinierten NAMESPACESccccuvrieiiciiee ettt e ettt e e erre e e st e e e e rbre e e e abteesessbeeeeassseeeeesabaeesensseeeesansees 25
LABEIS..... et e e e h e e e s b e e e be e e eate e s be e e nneeeaareesaneeesreeen 25
Beispiel eines KUbernetes Labels:. ...t e 26
ANNOTALIONS.oiiiiiiiii e 27
Beispiel einer Kubernetes ANNOTatioNS:ccccuiieiiciiieiiiiiee et e e e eare e e e 28
Labels VS. ANNOTATIONS ...ccueiiuiiiiieteetee sttt sttt et sb e sate s e st e b e bt e s meesmeeemeeenneenneens 28
WOrKIOAd-ODBJEKEEcoooiiiiieiiiiie e e e st e e e sea e e e s satee e s sentaeessanreeeesnns 29
=T o] Tor= KT =] PR 29
[0 T=Y o] Lo 3y 4 YT o | SRR 31
0o [T aT=d Wl oo E N A eIl o T =T o =] =Y PSSR 32
kubect! Befehle flr das DePlOYMENTuviiiii et e e e e e e e e e e e e neree s 32

Uberblick Giber die Architektur von Kubernetes - Anatoli Kreyman

1D - T=1 4 1 To 14 Y= SRR 33

STALETUISEL ...ttt st st b e bt s st ettt b e sae e saeeeare e 34
HEAAIESS SEIVICE ...ttt ettt st et e sa e s bt e sab e st e e e amteesbe e e snseesareesneeesareeeanes 34
JODS ettt s bt e e b e e e s be e e hee e e Ee e e be e e s bee e beeeanreesareeesnreenas 35
CrONJODS ... et e e s bt e h et e re e e bt e e s b e e e be e e enree s reeennreas 36
HeEalthCheCk-0OBJEKEEcoooieiieeee et e e e et e e e et ae e e e sabe e e e e sabteesennraneeesnsens 36
LIVENESS PrODE ...ttt et st st e ne e e eene e 36
REAINESS PrODE ...ttt sttt e s e e e sbe e e sab e e sar e e s neeesareeeanes 37

1Y =T R U1 o I o] o SEURR 37
Taints UNA TOIEIAtIONS.......cc.ciiiiiiiieiieee ettt st st esbe e st et e e e enne e 38
Taints und Tolerations - technische UmMSELZUNGcccovciiiiiiiieee et 38
AN O P I ONEN s 39
Typische ANWENAUNESTAIIEvviieiee e e e e e e e rre e e e e e e e naeraees 40
NOUESEIECLON ...ttt ettt e e ebe e e s b e s b e e e saeeesabeeesneeesmreesneeesareeans 41
[\ To e L= i Ty T A TSR 42
Pod Affinity / POd ANti-ATFINILY...........ooiieiiiiececcececece ettt ettt s e saresareereereebeesteans 44
PO ALY ottt e et e e e et e e e e tb e e e e eeab e e e e e eabeeeeatteeeeaaabaeeeetreeeearraeeeannees 44
PO ANT-ATINITY oot e e e ettt e e e et e e e e e eab e e e e e bt eeeeeabeeaeetbeeeeeareeeeannees 46
KUbernetes NETZWEIKoo ittt e sb e e e s e s nee e sareeeas 47
L0 N o T = {1 PSSP 47
SEIVICE-DISCOVEIY .evvtiiiiiiitiettietttetetetereeereeeeeeereae—————————————.——ta—.—————————.——.......—........taetaa 47
NEEWOIK-POICIES ...ttt ettt e s e s e e bt e e sabe e e beeesareesneeesaneesanes 47
Pod-to-Pod-Kommunikation................oooiiiiiiiiiii e e 47
Netzwerk-Arten im Kubernetes CIUSTEN..........oi i e 47
NOGE NETWOTK ..ttt ettt she e sat e st e s bt e bt e b e e s seesme e emeeemeeeseenneens 48

PO NEtWOIK / CIUSEEE NETWOTK veeeieveieeieeeieeeeettte et e e et e s et e e s ee et e sesbaeesssreeessssaaeesssnaeessanees 48
SEIVICE NEEWOTK ...t sttt et e e sb e e e be e e smreesneeesnneenas 49

(] oY= o g Y=l F ST [Fod T TP 50
NamMe-based Virtual HOSES......couiiiiiiieieiieeere ettt s 50
Path-Dased ROULINGcccoiiiiiiiiiiiie ettt e et e e e s et e e s et ae e e eabe e e e e abaeeeennneeeeennsens 50

TLS TErMINATION cooeiiiiiiiiiiiit e et 50
SEIVICE API VS, INGIESS ..eeiiieiiiiiiieieieieeeeeeeteeeeeeeteeeeerereeereeeeerarerererererererererererereremeresssssssssssesnsssnsnsssnnes 50
Open SoUrce INGress CONLIOIIETuieii it e e e e e e e e e e e e e e e e s snnraaeeeeeeeesannes 51

[aT=d T T] o1 =] PRSP 51

U] 01T TN ST o =4 Y] USRS 51
= T 2T 1Y o =] USRS 52

Uberblick Giber die Architektur von Kubernetes - Anatoli Kreyman

KUbEernetes DNS (KUDE-UNS) ...uvueiiiiiiiiiiiiiiie ettt ettt e e e e seeaabbeeeeeeeesennssbaeeeeeeeens 52

KUDEINELES COMEDINS ...ttt sttt et s bt st st st e e bt e bt e s seesmeeemeeeneenneens 52
Kubernetes Netzwerk-Plugins / Container Networking Interface (CNI)ccooeeeeveeveeeeceeeeeee e, 53
Y] Y/ (o= R/ o 1] o SRS 53
CIUSTEIIP ettt et e s e ettt e s at e e s bt e e s ae e e s ate e s bt e e sabeesabeeeameeesabeeeanneesnseesaneeesareanas 54
2T T o1 N @ LU) Y 1SS 54
INOAEPOIT ..ttt ettt b e s bt sttt et et esb e e shee s et e s bt e bt e beeaseesmeeemeeenneeneens 55
BEISPIEI NOGEPOITuiiiieeie ettt e et r e e e e e e e et e e e e e e e eesanttaaeeeaeeseansstaeeeeeeesennnsrsnees 55
Moo |21 Yool OO P U PR USRPRN 56
EXEEINAIIPS ...ttt sttt b e bt st s b e bt e s be e sne e et ereeneen 56
Beispiel EXLEINAINGMIE.......iiii ettt e e e e e e et e e et ae e e e abeee e e abaeeeennreeeeeeanees 57
NOAEPOIt VS. EXTEINAIIPS ...coveiiiiiiiieeeeeeee ettt ettt e nee s 57
EXEEINAINGMIE .. ettt st e bt et e e s bt e e s b e s b e e e nt e e s bt e e s nr e e s are e e neeesareeeanee 58
Beispiel EXLEINAINGME....cccci et e e e e e e e e e et a e e e e e e s e s aartaeeeeeeeeensrreeees 58

(0] =T Ty T o] - V-SSR 59
VOIUIMES ..ttt ettt et et e s b e s heesate s ab e e bt e b e e e bt e sme e eat e et e e b e enbeesbeesanesaneeane 59
PErSISTENT VOIUME. ...ciiiiie ettt ettt e s bt e st e s abe e e smte e sabe e e snbeesareesneeesareeennes 60
Persistent VOIUME Claimooiiii ettt sttt sttt esbe e e ne e e smr e e sne e e sareeeanes 61
YO T o1 USSR 61
ACCESS IMOTES ...ttt ettt b e st st st e b e bt e be e s bt e et e et e e bt e b nbe e sanesane e 61
STAtIC PrOVISIONING oo 62
DYNAMIC PrOVISIONING ... s 62

] Ko =Y <{<I 01 - 1SRRI 62

Y o] =Y o{ =T 1 =T o1 ol [SRR 62

F T o XY or- 1 11 7 USRS 63
I Y Y=Y 0T a Y- SRR 63
Was ist Kubernetes AULOSCAlING?ueiiiiii it e e e e e e et e e e e e e e e abaaeeeeeeeseennes 63
Autoscaling-Funktionen flir KUBEINEtEs...........uuiiiiiiii e 64
Vertical PO AUTOSCAIET (VPA)cco ettt ettt e e ettt e e e e e e esabareeeeeeeeensbaaseeeeeeeennnnns 64
Horizontal POd AULOSCAIEr (HPA) ..ottt e e e eeeabr e e e e e e e sensrbrareeeeeees 65
(21 27AN (o] g pT e To] T=T o1 (=] o H 65
HPA-VEISIONEN ...ttt st e st r e s e e e s e r e e e s e nre e e s e mreresenrenesennneneesannens 66
CIUSEEE AULOSCAIEN ...ttt ettt et e st e e ae e e s bt e e bt e e sabeesabeeeemeeesareeenneeas 66
ReqUESES UN LIMITS........oiiiiiiiiiii ettt e e e e et e e e et e e e e aba e e e eabeeeeesasaeesennsaneeennnens 67
REGUESTS et s 67
70 0 £SO PPROP 67

Uberblick Giber die Architektur von Kubernetes - Anatoli Kreyman

[T 0] =T =] o PO 68

(@1 e U I oV} a1V - T 68
OUL-OF-MEMOIY (OOIM) ...ttt ettt etee e ettt e e e e tb e e e e etaeeeeeabeeeeeasseeeeasseeaeansseeesansreeaeannreeans 69
RESOUICE QUUOTASeeiiiiiiiie ittt e st e s e e e e s e e e s e s r e e e s e re e e s e anne e e s e annenesesnraneesnnnens 70
QuAality OFf SEIVICE (QOS)........eeicuieeiiieeiie et ettt et e e te e st e et e e sste e ete e e sate e s teeesteesnseeensaeennseesseeenseens 71
CTUET =101 (=T<Te DTS U PP PR URTOPROPPOP 71
BUISEADIE.... e st e st e b e s e et reene e 71
21 4 = o] APPSO UTUPPTUURRUSRVSON 71
LT o =1 PP PPRROPPPRRO 72
ATTEN VON SECIEES ..oiiiiiiiiiiiiiii ettt e ba e s a e e s s ba e e s s sana s 72
Y11 [0l a1 T o= qe [T Y=Y o1 £ SR 72
Secret ENCryption CONTIg ..ocuviii ettt e e e e e s et e e e e s eata e e e santaeeesntaeaesans 72
Verwendung von Secrets-Management-TOOIS...........ceuveiiiiiciiiiiiie e e 73
Base64 Sicherheitshedenken.oouei i s e 73
Lo\ TNl o T - 2SS 74
Inhalt der Zertifizierung (offizielle INformation)........c.ccoveeiiciii e 74
Kompetenzbereiche (offizielle INfOrmation).........cc.eeeiiii e e 74
PrUfUNGSAELAINS e e e e e e e e e e e aabt e e e e e e e e seeanrtaeeeeeeesennnssraneeaaanas 74

Hinweis / Disclaimer

Dieses kleine Buch ist wahrend meiner persdnlichen Vorbereitung auf die Kubernetes
and Cloud Native Associate (KCNA)-Priufung entstanden. Es spiegelt meinen damaligen
Wissensstand und mein Verstandnis von Kubernetes wider. Ich kann daher weder die
vollstandige Korrektheit noch die Aktualitat der Inhalte garantieren —insbesondere, da
sich Kubernetes und das Cloud-Native-Umfeld standig weiterentwickeln.

Die bereitgestellten Informationen dienen ausschlieBlich zu Lern- und
Informationszwecken. Eine Haftung flr eventuelle Fehler oder daraus entstehende
Konsequenzen wird ausgeschlossen.

Uberblick Giber die Architektur von Kubernetes - Anatoli Kreyman

Was ist Kubernetes?

Kubernetes ist eine marktfihrende Orchestrierungsplattform fiir die Bereitstellung, Skalierung
und Verwaltung von Containern in einem oder mehreren Clustern. Kubernetes (auch K8s
genannt) wurde als Open-Source-Technologie im Jahr 2014 von Google ins Leben gerufen und
wird von Cloud Native Computing Foundation weiter gefiihrt. Inzwischen ist Kubernetes der
De-facto-Standard fiir die Container-Orchestrierung geworden. Kubernetes wird oft mit ,, K85
abgekirzt — zwischen dem ,K“ und dem ,,S“ stehen 8 Buchstaben.

VM vs. Container oder OS Isolierung vs. Applikation Isolierung

P - 1 - Comtainersierte App * Containersierte App * Containersierte App ‘.
Applikation | Applikation Applikation bwz. Microservice doeker| | bwz. Microservice decker | bWz, Microservice daeker
Dependencies [Dependencies l l Dependencies | | Dependencies | | Dependencies | Dependencies |

Guest 0OS Guest OS Guest OS
Docker Engine a *’
4 14 4 B oo -
Hypervisor Hypervisor

Zunachst ein paar Worte zur Containerisierung. Im Vergleich zu einer klassischen Applikation,
die direkt auf einem Betriebssystem einer VM installiert wird, bendtigen containerisierte
Applikationen kein sehr abgespecktes Betriebssystem (z.B. Windows Core) und enthalten alle
notwendigen Abhangigkeiten in einem Container selbst. Die Vorteile dieser Technologie sind:

e wesentlich weniger Hardware-Ressourcen werden benétigt (massive Kosten-
Ersparnisse, besonders in der Cloud interessant)

e ein Container startet viel schneller als jedes Betriebssystem

o die Sicherheit wird durch einen kleineren Footprint erhdht

o die Software-Versionierung wird vereinfacht

e eine Plattform-Unabhangigkeit wird gewahrleistet

e ein Container ist oft eine Basis fir die Microservices-Architektur

Microservices

Microservices ist ein Begriff aus der Softwareentwicklung. Vereinfacht gesagt bedeuten
Microservices nichts anderes als die Zerlegung einer groBen (monolithischen) Anwendung in
kleine Einzelteile, die bestimmte Dienste/Geschaftsfunktionen abbilden kdnnen.

In den letzten Jahren hat die Microservices-Architektur an Popularitdt gewonnen. Dies ist
unter anderem auf die Verbreitung der Containerisierung zurlickzufiihren oder hat der Trend
zur Microservice-Architektur die Containerisierung vorangetrieben (darlber streiten sich die
Gelehrten). Wie jede Technologie hat auch die Microservice-Architektur Vor- und Nachteile.

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

https://kubernetes.io/de/
https://www.cncf.io/

Die gemeinsame Verwendung von Microservices und Kubernetes reduziert die moglichen
Nachteile beim Ubergang zur Microservices-Architektur.

Verwendungsszenarien

Einsatzszenarien

Je nachdem, mit wem man Uber Kubernetes spricht, wird man zwei Meinungen horen. Der
Softwareentwickler sieht in dieser Technologie ein perfektes Werkzeug, um seine Produkte zu
testen und damit die Softwareentwicklung zu beschleunigen bzw. Releasezyklen zu verkiirzen.
Aus Sicht des Managements kdnnen nun viele produktive Bereiche containerisiert und damit
der Weg vom Test in die Produktion beschleunigt werden. Die Liste der Vorteile scheint mir
also deutlich langer zu sein als die der Nachteile.

Kubernetes Vorteile

Flexibilitat

Kubernetes passt perfekt zu einem weiteren Trend und ermdglicht eine ,schmerzfreie”
Migration in der Cloud. Alle groRen Cloud-Anbieter (nicht nur AWS, GCP, Azure) bieten
mittlerweile eine eigene Kubernetes-Infrastruktur an. Es ist auch moglich, mehrere Anbieter
miteinander oder mit einer lokalen Infrastruktur zu verbinden.

Skalierbarkeit / Effizienz

Kubernetes automatisiert die horizontale Skalierung (Scale out) durch Hinzufiigen oder
Entfernen von Containern, basierend auf aktuellen Auslastungsindikatoren. Die automatische
vertikale Skalierung (Scale up) sorgt fir eine effiziente Zuteilung der im Cluster verfligbaren
Hardwareressourcen. Die Verwendung von ClI/CD- Pipeline (Continuous Integration /
Continuous Delivery) ist eine sinnvolle Ergdnzung zu einer Kubernetes-Infrastruktur und tragt
zur Effizienz bei.

Ausfallsicherheit

Kubernetes beinhaltet einige Mechanismen, um die Hochverfligbarkeit sowohl fiir die
Infrastruktur selbst als auch fiir die darauf laufenden Applikationen zu gewdhrleisten. An
dieser Stelle ist anzumerken, dass die Applikation in der Lage sein muss, mit dem plotzlichen
Ausfall von Containern umzugehen. Es wird zwar automatisch ein neuer Container gestartet,
aber dessen Zustand bleibt nicht erhalten. Auch ein ,,VMotion” von Containern ist nicht
vorgesehen — es wird immer ein neuer Container gestartet. Darliber hinaus Uberwacht
Kubernetes kontinuierlich den aktuellen Zustand des Clusters. Hinzu kommen ein effizientes
Traffic-Routing und Load Balancing.

Deklarative Konfiguration

Eine deklarative Beschreibung bzw. Konfiguration der Infrastruktur tragt ebenfalls zur
Stabilitat der Kubernetes-Infrastruktur bei. Im Gegensatz zu einer imperativen Konfiguration,
die in Form von klaren Anweisungen agiert (wie z.B. Create instance A, Create instance B,
Create instance C), definiert eine deklarative Konfiguration lediglich die Anzahl der benétigten
Instanzen (z.B. Anzahl der laufenden Instanzen = 3). Diese Methode macht auch das Rollback
zu einer friheren Version sehr einfach. Kubernetes wird immer versuchen, den in der
deklarativen Beschreibung definierten Zustand herzustellen, aber es gibt keine Garantie, dass
dieser Zustand erreicht wird.

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

https://www.redhat.com/de/topics/devops/what-cicd-pipeline
https://www.vmware.com/de/products/vsphere/vmotion.html

Self-Healing

Die Selbstheilungsfahigkeit ist zweifellos eine der besten Eigenschaften von Kubernetes.
Wenn eine containerisierte Anwendung oder ein (im Container platzierter) Pod abstirzt,
startet Kubernetes die abgestiirzten Komponenten neu (sofern geniligend Ressourcen
verfugbar sind und die Anwendung den Ausfall ,verkraften” kann).

Okosystems

Ein Vorteil einer populdren Open-Source-Lésung ist ein breites Okosystem (Security,
Monitoring-, Reporting- und Visualisierungs-Tools wie z.B. ElasticSearch + Kibana). Das hilft
die Nutzbarkeit des Produktes zu verbessern. Auch in diesem Fall wiirden die hilfreichen
Erweiterungen (wie z.B. Prometheus) in der Regel keine zusatzlichen Kosten verursachen.

Unter diesem Link finden Sie die aktuelle Landkarte der Projekte der Cloud Native Computing
Foundation: https://cncf.landscape2.io

Kubernetes Nachteile

Kosten und Komplexitat

Die Umstellung auf Kubernetes kann teuer und umstédndlich sein. Selten kann man auf der
griinen Wiese beginnen. In den meisten Fallen muss die bestehende Software so angepasst
werden, dass sie problemlos auf Kubernetes lduft. Zunachst muss der finanzielle und zeitliche
Aufwand fir die Anpassung der Software abgeschatzt werden. Hierflir werden Experten mit
fundierten K8s Kenntnissen sowie Softwareentwickler mit Erfahrung in der Entwicklung von
containerisierten Anwendungen bendtigt.

Nicht immer sinnvoll

Nicht fur jede bestehende monolithische Anwendung ist es wirtschaftlich und/oder technisch
sinnvoll, sie zu containerisieren. Auch die betrieblichen und organisatorischen Anpassungen
konnen fiir manche Unternehmen und IT-Abteilungen eine groRere Herausforderung
darstellen.

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

https://www.elastic.co/de/
https://www.elastic.co/de/kibana
https://prometheus.io/
https://cncf.landscape2.io/

Kubernetes-Architektur Diagramm

Die Kubernetes-Architektur besteht im Groben aus zwei Schichten. Die erste Schicht kdnnte
man als eine physikalische Schicht bezeichnen. Auf dieser Ebene befinden sich zwei
Komponenten: ein oder mehrere Master Nodes sowie ein oder mehrere Worker Nodes.

' ™

(T Thod T (" Thed O
|
N | i
e e}
| |
\

| !/
(APl Server) _ e
[e | O | Ry e -~
L |17 TPed T
(Controller Manager) |
- G)
j | container[8] | |
et contaier] |
k) G=r==]
Control Node s
Runtime
L v
Worker Node
r ~
(" TRed Ty (T TRl T
|
| |
)
| || (comarerm] |
Kubernetes | Iy :
Cluster L /I S’
S A
’ i(F Pod -\|
oo |
[==
il
|
L e
Runtime
L v
L. A

Die weiteren Schichten sind zwei logische Abstraktionen:

e der Kubernetes Cluster selbst, welcher alle Komponenten
beinhaltet

e die Pods, in denen einer oder mehrere Container Instanzen
ausgefuhrt werden

Die Abbildung auf der rechten Seite verdeutlich die logische Gliederung

Kubernetes Cluster

der Komponenten: Cluster beinhaltet Nodes, Nodes beinhalten Pods, ~

Pods beinhalten einzelnen Containers.

Configuration Maximums. Nicht mehr als ...
110 Pods pro Node.

5000 Nodes.

150 000 |Pods in einem Cluster.

300 000 | Containers in einem Cluster.

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman 11

Control Plane

Der Control Node ist eine wichtige Komponente von Kubernetes und besteht aus mehreren
Bestandteilen, die eng miteinander interagieren, um den Kubernetes-Cluster zu steuern und
zu verwalten.

Hier sind die wichtigsten Komponenten des Control Plane Nodes:

e kube-apiserver

o etcd

e kube-controller-manager
e kube-scheduler

Kubernetes API-Server

Der API-Server ist eine Komponente von Kubernetes, die es ermoglicht, den Cluster zentral zu
verwalten und zu steuern. Durch die Verwendung der APl kdnnen Entwickler und
Administratoren Kubernetes-Anwendungen erstellen, die auf die Ressourcen des Clusters
zugreifen und diese verwalten kénnen.

Der Kubernetes-API-Server ist das primare Gateway fiir die Interaktion mit dem Kubernetes-
Cluster. Er bietet eine RESTful-API-Schnittstelle fiir die Verwaltung der Kubernetes-Ressourcen
und ist fur die Authentifizierung und Autorisierung von Benutzeranfragen verantwortlich.

ETCD

Kubernetes etcd wird verwendet, um Konfigurationsdaten und Informationen Uber den
Zustand des Clusters, sowie liber die Kubernetes-Ressourcen zu speichern und zu verwalten.

etcd ist eine zuverlassige, verteilte Datenbank, die von CoreQOS entwickelt wurde und auf
einfachen Schlissel-Wert-Paaren basiert. Zwecks Hochverfiigbarkeit und Skalierbarkeit kann
etcd auf mehreren (auch separaten) Cluster Knoten ausgefiihrt werden.

etcd interagiert eng mit anderen Komponenten in der Architektur von Kubernetes. Der API
Server greift auf etcd zu, um Informationen (iber Kubernetes-Ressourcen zu speichern und
abzurufen. Der Kubernetes-Controller-Manager verwendet etcd, um Informationen liber den
Cluster-Status zu Gberwachen und automatisch den Zustand des Clusters anzupassen.

kube-controller-manager

Der Kubernetes kube-controller-manager ist eine Komponente von Kubernetes, die fir die
Uberwachung und Verwaltung von Controller-Objekten im Cluster und die Durchsetzung des
gewilinschten Zustands (Desired State) verantwortlich ist. Der kube-controller-manager
verwendet verschiedene Controller-Algorithmen, um Controller-Objekte zu verwalten. Zu
diesen Algorithmen gehdren der Replication-Controller, der Deployment-Controller, der
StatefulSet-Controller und der DaemonSet-Controller.

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

kube-scheduler

Der Kubernetes kube-scheduler ist eine Architekturkomponente, die fiir die Zuweisung von
Pods zu Nodes im Cluster verantwortlich ist. Der Scheduler wahlt den geeigneten Node aus,
auf dem ein Pod ausgefiihrt werden soll, basierend auf verschiedenen Faktoren wie den
Ressourcenanforderungen des Pods, der Verfligbarkeit von Nodes und den spezifischen
Anforderungen der Anwendungen. Der kube-scheduler verwendet einen Algorithmus, um den
am besten geeigneten Knoten fir die Ausfiihrung des Pods zu finden. Der Algorithmus ist
anpassbar und kann durch benutzerdefinierte Filter und Prioritaten erweitert werden.

Worker Nodes

Worker Nodes dienen der Ausfihrung von Pods. Ein Worker Node ist ein physischer oder
virtueller Computer, auf dem eine Container-Laufzeitumgebung (z.B. containerd) ausgefihrt
wird. Ein Kubernetes-Cluster kann aus Hunderten oder Tausenden von Worker Nodes
bestehen, je nach GroRe des Clusters.

Ein Worker Node beinhaltet drei folgende Komponenten:

e kubelet
e kube-proxy
e Container Runtime

kubelet

Kubelet ist eine Komponente der Worker Node Architektur, die fur die Verwaltung der Pods
auf einem Worker Node im Cluster verantwortlich ist. Das Kubelet ist ein Agent, der auf jedem
Node (kann auch auf den Control Nodes ausgefiihrt werden) in einem Kubernetes-Cluster
|3uft. Er ist verantwortlich fiir das Starten, Uberwachen und Stoppen von Pods, basierend auf
den Pod-Spezifikationen, die er vom Kubernetes API Server erhilt.

Der Kubelet tiberwacht auch die Ressourcennutzung auf dem Node und stellt sicher, dass
genigend Ressourcen fir die laufenden Pods zur Verfligung stehen.

In Bezug auf das Netzwerk stellt er sicher, dass der Netzwerkstatus eines Pods korrekt
gemeldet wird und dass der Pod die notwendigen Netzwerkressourcen erhalt. Der Rest wird
vom Kube-Proxy erledigt.

Kube-proxy
kube-proxy ist fiir das Routing des Netzwerkverkehrs innerhalb des Clusters zustandig. kube-
proxy ermoglicht, dass die Anwendungen und Dienste innerhalb des Clusters Uber ihre

Netzwerkadressen erreichbar sind, unabhdngig davon, auf welchem Node sie ausgefiihrt
werden.

kube-proxy verwendet verschiedene Modi, um den Netzwerkverkehr innerhalb des Clusters
zu steuern. Die wichtigsten Funktionen und Eigenschaften sind hier kurz zusammengefasst:

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

|P-Tables-Modus

kube-proxy kann im IP-Tables-Modus betrieben werden, wobei das IP-Tables-Tool zur
Definition und Verwaltung von Netzwerkregeln verwendet wird. Diese Regeln leiten den
Datenverkehr je nach Konfiguration an die entsprechenden Pods weiter oder blockieren ihn.

[PVS-Modus

Im IPVS-Modus verwendet kube-proxy das IPVS-Modul (IP Virtual Server), das fir
fortschrittliches Load Balancing. IPVS bietet im Vergleich zum IP-Tables-Modus eine
verbesserte Performance und Skalierbarkeit, insbesondere in groBen und komplexen
Clustern.

iptables-Modus

Im iptables-Modus programmiert Kube-Proxy iptables-Regeln auf jedem Node, um den
Netzwerkverkehr von Services zu den zugehdrigen Endpunkten (Pods) weiterzuleiten. Dabei
werden die von Kubernetes verwalteten Endpoints bzw. Endpoint Slices verwendet, um
eingehende Service-Anfragen per NAT an die passenden Pod-IP-Adressen zu verteilen.

Container Runtime

Die Container Runtime ist die dritte Komponente des Kubernetes Worker Nodes und ist fir
das Starten, Stoppen und Uberwachen von Containern auf einem Worker Node
verantwortlich. Sie stellt sicher, dass die Container gemdR den Spezifikationen der
Kubernetes-Objekte (wie z.B. Pods) ausgefiihrt werden. Die zweite Aufgabe Container-Images
aus einer Registry herunterladen und lokal bereitstellen.

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

API| Server

Wie bereits erwahnt, ist der API-Server eine Komponente des Control Plane, der als zentrale
Steuereinheit zwischen den verschiedenen Komponenten des Clusters und den
Benutzern/Administratoren fungiert. Die Konfiguration und Steuerung des Kubernetes-
Clusters ist nur tUber den API-Server moglich. Der Kubernetes API Server ist ein typisches
Beispiel fiir eine Client-Server-Architektur.

- Control Plane

Kube Controller
Manager

—

sched

Entwicklertools
Kube Scheduler Infrastruktur-Tools
Monitoring

Logging

Security

Der API-Server selbst ist ein einzelner, in der Programmiersprache Go geschriebener Prozess.
Der API-Server stellt eine RESTful API bereit, die flr Authentifizierung, Autorisierung,
Validierung, Zulassung, Ressourcenspeicherung, Informationsabruf sowie CRUD-Operationen
(Create, Read, Update, Delete) verantwortlich ist.

Hier sind die Kernfunktionen der RESTful im erweiterten Uberblick:
RESTful API
Im Allgemeinen ist eine RESTful APl (Representational State Transfer) eine

Softwarearchitektur, die es Systemen ermoglicht, Gber das Internet/Intranet per http
miteinander zu kommunizieren und Ressourcen auszutauschen.

RESTful APIs basieren auf dem Konzept von Ressourcen. Eine Ressource ist ein Objekt (oft als
Entitdt bezeichnet), auf das lber eine eindeutige URL zugegriffen werden kann.

Der Client kann eine Anwendung, ein Skript oder ein System sein, das die API-Anfragen sendet.
Der Kubernetes API-Server verarbeitet diese Anfragen. Dabei ist die RESTful APl zustandslos,
das bedeutet, dass keine Informationen lber vorherige Anfragen speichert werden.

In einem Kubernetes-Cluster gibt es viele verschiedene Arten von Ressourcen, wie z.B. Pods,
Deployments, Services und ConfigMaps. Jede dieser Ressourcen hat ihre eigene spezielle URL,
Uber die man sie in der APl aufrufen kann.

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

https://de.wikipedia.org/wiki/Representational_State_Transfer

Die haufigsten http-Methoden in Kubernetes sind (die kursiv markierten Methoden gelten als
speziell):

e GET - eine Ressource abrufen oder Informationen dariiber erhalten
e POST - eine neue Ressource erstellen

e PUT - eine vorhandene Ressource aktualisieren oder ersetzen

e DELETE - eine vorhandene Ressource |6schen

e PATCH - die angegebenen Felder einer Ressource andern

Zusatzlich gibt es Kubernetes-spezifische Subresources/Operationen wie:

e LOG - abrufen von Protokollen aus einem Container in einem Pod

e EXEC - ausfiihren eines Befehls in einem Container und Abrufen der Ausgabe

e WATCH - Anderungsbenachrichtigungen fiir eine Ressource mit Streaming-
Ausgabe

kubectl api-resources
kubectl api-resources - zeigt die Ressourcen zusammen mit ihren Kurznamen, API-Gruppen
und ob sie in einem bestimmten Namespace verfligbar oder clusterweit verfiigbar sind.

anatoli@admin-vm:~$ kubectl api-resources
SHORTNAMES APIVERSION NAMESPACED KIND
vl Binding
G5 vl ComponentStatus
cm vl t ConfigMap
ep vl t Endpoints
ev vl t Event
limitranges limits vl LimitRange
namespaces ns vl Namespace
: vl Node
pvc vl PersistentVolumeClaim
2% vl PersistentVolume
po vl t Pod
podtemplates vl t PodTemplate
replicationcontrollers rc vl t ReplicationController
resourcequotas quota vl t ResourceQuota
secrets vl t Secret
serviceaccounts sa vl t ServiceAccount
services sVe vl t Service
challenges acme.cert-manager.i0/v1 t Challenge
orders acme.cert- Al t Order
mutatingwebhookconfigurations admissionre ration. 1 f MutatingWebhookConfiguration
validatingwebhookconfigurations admissionreg ration. i ValidatingWebhookConfiguration
customresourcedefinitions crd,crds apilextensions.k8s.10/v1 f CustomResourceDefinition
apiservices apiregistration.k8s.io/v1 APIService
controllerrevisions apps/vl t ControllerRevision
daemonsets ds apps/vl t DaemonSet
deployments deploy apps/vl t Deployment
replicasets rs apps/vl t ReplicaSet
statefulsets sts apps/vl t StatefulSet
tokenreviews authentication.k8s.1o/v1 5 TokenRev iew
authorization.ki t LocalSubjectAccessReview
authorization. ki - SelfSubjectAccessReview
selfsubjectrulesreviews authorization.ki SelfSubjectRulesReview
subjectaccessreviews authorization.k8s. 10/v1 : SubjectAccessReview
horizontalpodautoscalers hpa autoscaling/v2 t HorizontalPodAutoscaler
cronjobs G batch/v1 t CronJob
jobs batch/v1 t Job
certificaterequests cr,crs cert-manager.io/vl t CertificateRequest
certificates cert,certs cert-manager.io/vl Certificate
clusterissuers cert-manager.io/vl fa ClusterIssuer
1ssuers cert-manager. 1io/vil Issuer
certificatesigningrequests sr certificates.k8s.10/v1 f CertificateSigningRequest

Authentifizierung, Autorisierung, Validierung und Zulassung

Authentifizierung

Der API-Server ist verantwortlich fiir die Authentifizierung von Benutzern und Komponenten,
die auf den Kubernetes Cluster zugreifen mdchten. Der API-Server stellt sicher, dass nur
authentifizierte Benutzer und Komponenten auf die Ressourcen zugreifen diirfen.

Uberblick Giber die Architektur von Kubernetes - Anatoli Kreyman 16

Uberblick Giber die Architektur von Kubernetes - Anatoli Kreyman

Autorisierung

Nach der Authentifizierung eines Benutzers oder einer Komponente pruft der API-Server, ob
diese berechtigt sind, die angeforderte Aktion auf der angegebenen Ressource auszufiihren.
Der API-Server kann sowohl Role-Based Access Control (RBAC) als auch Attribute-Based Access
Control (ABAC) verwenden, wobei RBAC die empfohlene und standardmaRige Methode ist.

Validierung

Der API-Server validiert eingehende API-Anfragen, nachdem diese authentifiziert und
autorisiert wurden. Der API-Server priift, ob die Daten in der Anfrage korrekt formatiert sind
und alle erforderlichen Felder enthalten. Wenn die Anfrage die Validierung nicht besteht, wird
sie zurlickgewiesen und der Client erhalt eine Fehlermeldung.

Zulassung

Nachdem eine Anfrage die Validierung bestanden hat, durchlduft er den Zulassungsprozess.
Der API-Server kann auch zusatzliche Prifungen durchfiihren und eventuell Anpassungen
vornehmen, z.B. sind an dieser Stelle die "Admission Webhooks"
(ValidatingAdmissionWebhook, MutatingAdmissionWebhook) integriert.

AnschlieBend werden die Anfragen, die authentifiziert, autorisiert, validiert und zugelassen
wurden, die Ressourcen und ihr Status in der ETCD gespeichert.

Informationsaustausch mit ETCD

Die Kommunikation mit der Datenbank (ETCD) gehort ebenfalls zu der Kernaufgaben der API-
Server. In diesem Fall ist der API-Server fir diese Aufgaben verantwortlich: Lesen von Daten,
Schreiben von Daten und Beobachten von Anderungen.

Lesen von Daten

Wenn eine Komponente (oder ein Benutzer Uber kubectl) den Zustand einer Ressource
abfragen mochte, sendet sie eine Anfrage an den API-Server. Der API-Server liest dann die
entsprechenden Daten aus ETCD und sendet sie an den Anfragenden zurick.

Schreiben von Daten

Wenn eine Komponente den Zustand einer Ressource dndern moéchte, sendet sie eine Anfrage
an den API-Server. Der API-Server validiert die Anfrage und schreibt die Anderungen in der
ETCD.

Beobachten von Anderungen

Viele Komponenten in Kubernetes miissen auf Anderungen an bestimmten Ressourcen
reagieren. Dies passiert, indem sie den API-Server auffordern, sie (iber Anderungen zu
informieren. Der APl Server hilt eine Verbindung zu ETCD und wird iiber Anderungen
informiert, die er danach an die beobachtenden Komponenten weiterleitet

Skalierbarkeit, Erweiterbarkeit, Versionskontrolle
Skalierbarkeit, Erweiterbarkeit und Versionskontrolle sind weitere Eigenschaften des API-
Servers.

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

Skalierbarkeit
Die Architektur des API-Servers ermoglicht eine horizontale Skalierung, um sowohl die
Leistung als auch die Verfligbarkeit zu erhéhen.

Erweiterbarkeit

Der API-Server ist erweiterbar und kann mit zusatzlichen Funktionen ausgestattet werden,
ohne dass der Kern des API-Servers verandert werden muss. Die wohl bekannteste
Moglichkeit ist die Verwendung von Custom Resource Definitions (CRDs). Die CRDs bieten die
Moglichkeit, neue Ressourcentypen zu definieren, die der API-Server verstehen kann. Weitere
Methoden sind Aggregated APIs, Admission Controllers, APl Extensions und Webhooks.

Versionskontrolle
Der API-Server unterstitzt die Versionskontrolle fir die APls, und ermdglicht damit die
Abwadrtskompatibilitat. Mehr dazu unten im Abschnitt: APl Groups

AP| Objects

Die API-Objekte sind die grundlegenden Einheiten (in der offiziellen Dokumentation als
Persistent Entities bezeichnet), mit denen Kubernetes interagiert und die den Zustand des
Kubernetes-Clusters reprasentieren.

Die API Objekte:

o reprasentieren und definieren den Zustand des Kubernetes-Clusters

o stellen alles dar, was in einem Kubernetes-Cluster existiert

o dienen als Basis, um den aktuellen Zustand mit dem gewiinschten Zustand zu
vergleichen

o dienen als Schnittstelle zwischen dem Benutzer und dem Kubernetes-System

e werden im YAML- oder JSON-Format beschrieben

e konnen Uber die Kubernetes APl oder Uber kubectl erstellt, aktualisiert und
geldscht werden

Kubernetes API-Objekte sind auf drei Arten organisiert: Kind, API-Group und API-Version

Pod DaemonSet |PersistentVolume Node

Service Job PersistentVolumeClaim |Role

Deployment [CronJob StorageClass ClusterRole
ReplicaSet |ConfigMap |Ingress RoleBinding
StatefulSet |(Secret Namespace ClusterRoleBinding
API Groups

API-Gruppen ermoglichen eine bessere Organisation von Ressourcen in der Kubernetes-API,
d.h. eine logische Strukturierung und Trennung voneinander.

Es gibt zwei Organisationsmethoden fiir API-Gruppen in Kubernetes: Core API-Gruppen und
Named API-Gruppen.

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

https://kubernetes.io/docs/concepts/overview/working-with-objects/
https://kubernetes.io/docs/concepts/overview/working-with-objects/

Core-API-Groups

Die erste ist die Core APl Group oder Legacy APl Group. Diese Gruppe enthalt Objekte, die
zum Aufbau der grundlegendsten Ressourcen (wie Pods, Services und Nodes) verwendet
werden. Als Kubernetes entwickelt wurde, gab es noch kein Konzept fiir API-Gruppen.

Named API-Groups

Mit der Weiterentwicklung von Kubernetes wuchs die Notwendigkeit, die neuen Objekte zu
klassifizieren. So entstanden die ,,Named API Groups”. Ein typisches Beispiel flir eine Named
APl Group finden Sie in der folgenden Tabelle. Sie werden auch feststellen, dass bei den
neueren Named API Groups der Name der APl Group auch Teil des URL Pfades wird.

API-Gruppe API-Objekte

Core-API (v1) Pod, Service, Volume, Namespace, Node, Event, Secret,
ConfigMap, PersistentVolume, PersistentVolumeClaim

Named-API-Groups:

apps Deployment, DaemonSet, ReplicaSet, StatefulSet
batch Job, CronJob
extensions Ingress

rbac.authorization.k8s.io [Role, RoleBinding, ClusterRole, ClusterRoleBinding

MutatingWebhookConfiguration,

dmissi istration.k8s.i
admissionregistration.kes IoVaIidatingWebhookConfiguration

apiextensions.k8s.io CustomResourceDefinition
networking.k8s.io NetworkPolicy
storage.k8s.io StorageClass, VolumeAttachment

Um die API-Gruppen und ihre Versionen zu verwenden, miissen Sie den vollstandigen Pfad
einer API-Ressource angeben. Der Pfad setzt sich aus der API-Gruppe, der Version und der
Ressource selbst zusammen. Zum Beispiel: /apis/apps/vl/deployments

Weitere Information: https://kubernetes.io/docs/reference/kubernetes-api/

AP| Resource Location — Beispiele

Beispiele flir URL-Pfade fiir Ressourcen in der Kubernetes-API:
Core API - URLs

e Pod: http://apiserver:port/api/vl/namespaces/{namespace}/pods/{pod-name}
e Service: http://apiserver:port/api/vl/namespaces/{namespace}/services/{service-name}
e Volume: http://apiserver:port/api/vl/persistentvolumes/{volume-name}

Named API Groups - URLs

e Deployment
o Gruppe "apps"
o http://apiserver:port/apis/apps/vl/namespaces/{namespace}/deployments/{deploy
ment-name}
o NetworkPolicy

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

https://kubernetes.io/docs/reference/kubernetes-api/
http://apiserver:port/api/v1/persistentvolumes/%7bvolume-name%7d

Gruppe "networking.k8s.io"
http://apiserver:port/apis/networking.k8s.io/vl/namespaces/{namespace}/network
policies/{networkpolicy-name}
¢ Role

Gruppe "rbac.authorization.k8s.io"

o http://apiserver:port/apis/rbac.authorization.k8s.io/vl/namespaces/{namespace}/ro
les/{role-name}

Beschreibung:

{namespace} steht flir den Namen des Namespaces
{pod-name}, {service-name}, {volume-name}, {deployment-name}, {networkpolicy-name}
und {role-name} stehen fir die Namen der Ressourcen

API Versioning

Die Kubernetes-APl unterstltzt verschiedene API-Versionen. Mehrere Versionen der
Kubernetes-APl kdnnen gleichzeitig auf einem Server vorhanden sein. Die API-Versionierung
ermoglicht sowohl Abwarts- als auch Aufwartskompatibilitat, d.h. wir kbnnen die API-Version
des Objekts, mit dem wir arbeiten wollen, in unserem YAML-Manifest angeben.

Wahrend der Entwicklung durchlduft die API-Version drei Phasen des Entwicklungsprozesses:
Alpha (Vl1alphal) > Beta (V1betal) > Stable (v1):

Alpha

Die Alpha-Version (experimental) ist die erste Entwicklungsstufe und enthédlt neue
Funktionen, die sich noch in der Entwicklung befinden. Diese Funktionen kdnnen noch
fehlerhaft sein und werden im Laufe der Zeit gedndert oder entfernt.

Beta

Die Beta-Version (pre release) ist die zweite und stabilere Entwicklungsstufe als die Alpha-
Version. In der Beta-Version wurden die Funktionen bereits getestet und verbessert.
Anderungen an den Funktionen sind noch moglich.

Stable

Die stabile Version (General Availability (GA)) ist die letzte Entwicklungsstufe und enthalt
ausfiihrlich getestete Funktionen. In dieser Version gibt es in der Regel keine Anderungen
mehr, sondern nur noch Fehlerbehebungen oder Sicherheitsupdates.

Die API-Versionen werden in der YAML-Konfigurationsdatei fiir Ressourcen und Workloads
angegeben. Wenn eine Funktion als Alpha oder Beta gekennzeichnet ist, sollte sie
verstandlicherweise nur zu Entwicklungs- oder Testzwecken verwendet werden.

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

HTTP-Antwortcodes vom API-Server

HTTP-Statuscode Bedeutung

Die Anfrage war erfolgreich. Die Antwort des Servers enthalt die

200 0K angeforderten Daten.
201 Created Die Anfrage war erfolgreich. Eine neue Ressource wurde erstellt.
202 Accepted Die Anfrage wurde akzeptiert und wird verarbeitet. Die Verarbeitung ist

noch nicht abgeschlossen.

204 No Content Die Anfrage war erfolgreich. Kein Inhalt vom Server zuriickgegeben.

Die Anfrage konnte aufgrund einer ungiltigen Syntax nicht verstanden

400 Bad Request werden.

401 Unauthorized |Die Anfrage erfordert eine Benutzerauthentifizierung.

Der Server hat die Anfrage verstanden. Er weigert sich jedoch,

403 Forbidden . ..
sie auszufihren.

404 Not Found Die angeforderte Ressource wurde auf dem Server nicht gefunden.

Anfrage konnte aufgrund eines Konflikts mit dem aktuellen

409 Conflict)
Ressourcenstatus nicht abgeschlossen werden.

500 Internal Server

Ein allgemeiner Fehler ist aufgetreten.
Error

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

Namespaces

Namespace 01

Kubernetes
Cluster

\

Namespaces sind sicherlich die wichtigste Methode, um Objekte in einem Kubernetes-Cluster in
logische Einheiten zu organisieren. Die Verwendung von Namespaces ermdglicht die Aufteilung eines
physischen Clusters in mehrere virtuelle Cluster. (Kubernetes-Namespaces hat nichts mit dem Konzept
des Namespace des Linux-Betriebssystems zu tun)

Die Einsatzszenarien von Namespaces lassen sich grob in vier Bereiche unterteilen:

e Isolierung

e Ressourcenverwaltung
e Zugriffssteuerung

¢ Namenstrennung

Isolierung

Die Isolierung ist wahrscheinlich der Hauptgrund fiir die Verwendung von Namespaces in
einem Kubernetes-Cluster. Die Isolierung bezieht sich sowohl auf die Sichtbarkeit als auch auf
die Ressourcennutzung.

Alle in einem Namespace vorhandenen Ressourcen sind standardmaRig* nur innerhalb dieses
Namespace sichtbar. Das bedeutet, dass z.B. Pods, Services, Volumes und andere Ressourcen,
die in einem Namespace erstellt wurden, nicht direkt von einem anderen Namespace aus
sichtbar oder zuganglich sind.

* Es gibt eine Reihe von Moglichkeiten, die Sichtbarkeit von Ressourcen zwischen Namespaces
zu implementieren: Ingress Controller, Service Mesh, RBAC, Kubernetes Network Policies,
Cluster-Scope Ressourcen. Nicht alle diese Tools und Konzepte haben direkt mit der
"Sichtbarkeit" von Ressourcen zu tun haben, sondern eher mit Zugriffskontrolle, Routing und
Kommunikation.

Uberblick Giber die Architektur von Kubernetes - Anatoli Kreyman 23

Ressourcenverwaltung

Aus technischer Sicht konnen Namespaces verwendet werden, um Ressourcenquoten zu
definieren, die in einem Namespace verbraucht werden kdnnen. Durch die Verwendung von
Namespace-basierten Ressourcenquoten kann verhindert werden, dass eine Anwendung alle
Ressourcen des Clusters fir sich beansprucht und dadurch andere Anwendungen
beeintrachtigt.

Es gibt eine Vielzahl von Ressourcen, deren Verbrauch begrenzt werden kann. Hier sind
einige Beispiele:

Begrenzt die < ... > die in einem Namespace erstellt

Ressourcenart "
oder beansprucht werden kénnen.
pods Gesamtzahl der Pods
services Gesamtzahl der Services

persistentvolumeclaims | Gesamtzahl der PersistentVolumeClaims

secrets Gesamtzahl der Secrets.
configmaps Gesamtzahl der ConfigMaps
requests.cpu Gesamtmenge an CPU-Zeit
requests.memory Gesamtmenge an Speicher
limits.cpu maximale Menge an CPU-Zeit
limits.memory maximale Menge an Speicher

requests.ephemeral-

Gesamtmenge an temporarem Speicherplatz
storage

limits.ephemeral-storage |maximale Menge an temporadrem Speicherplatz

Fiir die technische Umsetzung ist der Kubernetes-Objekttyp (Kind) ,,ResourceQuota“
zustandig. Hier ist ein Beispiel wie die Anzahl der Pods in einem Namespace begrenzt wird:

apiVersion: v1
kind: ResourceQuota
metadata:

name: pod-quota

namespace: mein-namespace
spec:

hard:

pods: "15"

Zugriffssteuerung

Die Namespaces (ibernehmen die Rolle der Sicherheitsgrenze fiir die rollenbasierte
Zugriffskontrolle. Wir kdnnen auf der Basis von Namespaces einschranken, wer auf welche
Ressourcen innerhalb eines Clusters zugreifen darf. Eine Ressource kann unter demselben
Namen in mehreren Namespaces existieren. (RBAC kann sowohl auf Namespace-Ebene als
auch auf Cluster-Ebene angewendet werden.)

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman 24

Namenstrennung

Die Namespaces kdnnen auch als eine Benennungsgrenze verwendet werden, wobei die
Namen der Ressourcen nur innerhalb eines Namespace, nicht aber im gesamten Cluster
eindeutig sein mussen.

Vordefinierten Namespaces

Nach der Installation eines neuen Kubernetes-Clusters stehen die folgenden vordefinierten
Namespaces zur Verfligung:

Namespace Beschreibung

Dies ist der Standard-Namespace, in dem Objekte erstellt werden,

default . .
wenn kein anderer Namespace angegeben ist.

Dieser Namespace ist fiir Objekte reserviert, die vom Kubernetes-

kube-system
¥ System selbst erstellt werden.

Dieser Namespace ist flir Ressourcen vorgesehen, die fiir alle Benutzer

kube-public offentlich sichtbar und lesbar sein sollen.

Dieser Namespace enthalt Lease-Objekte, die mit jedem Knoten

kube-node-lease .
verbunden sind.

Labels

W

pod Red

e Kubernetes Cluster ~ jaiaiaiaiaiaiieie -

Die zweite Methode, um Objekte / Ressourcen im Kubernetes-Cluster zu organisieren und zu
kennzeichnen, wird als ,Labels” bezeichnet. Kubernetes Objekte/Ressourcen werden mit
Labels versehen, um sie spater leichter finden und auswahlen zu kdnnen. Fast alle erstellbaren
Ressourcen (Pods, Services, Volumes, Nodes, ReplicaSets, Deployments, StatefulSets usw.)
konnen mit Labels versehen werden.

W

Im GroRen und Ganzen werden die Labels in drei Szenarien verwendet:

e Auswahl und Gruppierung. Man kénnte bestimmte Ressourcen anhand ihrer
Labels auswahlen und gruppieren.

e Service Discovery. Man konnte z.B. einen Service so konfigurieren, dass er nur
die Pods verwendet, die entsprechend gelabelt sind.

Uberblick Giber die Architektur von Kubernetes - Anatoli Kreyman 25

¢ ReplicaSets und Deployments. In diesem Use Case werden nur die Pods von
ReplicaSets / Deployments verwendet, die ein bestimmtes Label tragen.

Aus technischer Sicht sind die Labels Schlissel-Wert-Paare (Key-Value Pair (KVP)). Die
Schlissel-Wert-Paare sind mit einer bestimmten Ressource in einem Cluster verknipft
(gelabelt).

e Der Schliissel (key): der Schliissel ist eine eindeutige Bezeichnung des Labels.
o Der Wert, der durch den Schlissel reprasentiert wird.

Beispiel eines Schliissel-Wert-Paares:

o app=meineSuperApp
o "app" ist der Schlissel
o "meineSuperApp" ist der Wert.

Die Schlissel-Wert-Paare konnen nicht beliebig benannt werden und unterliegen bestimmten
Regeln. In Kubernetes diirfen die Schliissel fur Labels maximal 63 Zeichen lang sein und die
Werte dirfen bis zu 253 Zeichen lang sein und diirfen die nur Buchstaben, Ziffern, Bindestriche
und Unterstriche enthalten. Weitere Einzelheiten sind hier zu finden.

Beispiel eines Kubernetes Labels:

Im folgenden Beispiel wird ein Deployment (kind: Deployment) mit dem Namen "mein-test-
deployment" erstellt.

I
|
|
|
|
|
|
[
|
|
|
|
|
|
|
|
|
|
|
|
|
\

Der selector im Abschnitt spec definiert, welche Pods von dem Deployment verwaltet werden.
Der matchLabels definiert, dass das Deployment alle Pods auswahlt, die das Label "app=v1"
(blau markiert) haben.

Die labels innerhalb der template Spezifikation definieren die Labels, die an diese Pods
angehangt werden. Die Labels "app=v1" (griin markiert) werden auf jedem Pod gesetzt, der
auf der Grundlage dieser YAML-Datei erstellt werden.

Die Werte im selector (matchLabels: app: v1) sollen mit den Werten in
den labels Gbereinstimmen bzw. miteinander gematcht sein.

apiVersion: apps/v1

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

kind: Deployment
metadata:
name: mein-test-deployment
spec:
replicas: 3
selector:
matchLabels:
app: v1
template:
metadata:
labels:
app: V1
spec:
containers:
- name: mein-supercontainer
image: app-image

In der Service-Datei (kind: Service) dient der selector dazu, die Pods auszuwdhlen, an die der
Service den Netzwerkverkehr weiterleitet soll. In diesem Fall sollte der ,,selector: app:
v1“ mit den ,labels: app: v1“ aus der Deployment-YAML gematcht werden.

apiVersion: v1
kind: Service
metadata:

name: mein-service
spec:

selector:

app: v1

ports:

- protocol: TCP
port: 80
targetPort: 8080

type: ClusterlP

Annotations

Annotations ist die dritte Methode, um Objekte in Kubernetes zu organisieren. Annotations
werden in der Regel von Benutzern verwendet, um Entscheidungen dariber zu treffen, was
mit einer bestimmten Ressource auf der Grundlage der Annotationen geschehen soll. In den
Regeln sind diese Informationen fir die Verwaltung von Objekten durch Kubernetes nicht
relevant, aber fir bestimmte Werkzeuge (z.B. Build-, Release- oder Image-Informationen)
kénnen sie nutzlich sein.

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

Die Verwendung von Annotations kann die Integration externer Datenquellen Uberfllssig
machen, da alle notwendigen Daten bereits an die Ressource angehangt sind und sich
innerhalb des Clusters befinden. Jeder Ressourcentyp in Kubernetes kann mit einer
Annotation versehen werden.

Aus technischen Sicht sind die Annotations ebenfalls Schlissel-Wert-Paare, die in der
Sektion Metadaten beschrieben werden. Die Schliissel von Annotations kdnnen bis zu 63
Zeichen lang sein, dhnlich wie bei Labels. Eine Annotation kann aber bis zu 256 KB lang sein
und somit wesentlich mehr Informationen enthalten.

Beispiel einer Kubernetes Annotations:

So kdnnen die Annotations in einer YAML-Datei aussehen:

apiVersion: apps/v1
kind: Deployment
metadata:
name: mydeployment
annotations:
last-checked: "2023-05-23T18:25:43.511Z7"
git-commit: "d4f0f834c0743264f0435f62f13c5e1e2899fb2"
owner: Anatoli
repository: "https://github.com/kubernetes/"
spec:
replicas: 3
selector:
matchLabels:
app: mein-super-app
template:
metadata:
labels:
app: mein-super-app
spec:
containers:
- name: mein-container
image: mein-image

Labels vs. Annotations

Der Hauptunterschied zwischen Labels und Annotations liegt in ihrer Verwendung. Labels
dienen der lIdentifizierung und Organisation von Kubernetes-Objekten und werden von
Kubernetes selbst zur Verwaltung von Objekten verwendet. Annotations enthalten
Informationen, die fiir die Verwaltung von Objekten durch Kubernetes nicht zwingend
erforderlich sind, die aber fiir Entwickler, Operatoren und Tools nitzlich sein kdnnen.

Uberblick Giber die Architektur von Kubernetes - Anatoli Kreyman 28

Workload-Objekte

Workload- und Ressourcenobjekte sind wichtige Bestandteile der Kubernetes-Architektur.
Diese Objekte beschreiben, wie ein Container oder eine Gruppe von Containern in Kubernetes
bereitgestellt und ausgefiihrt wird. Oft werden die Begriffe , Kubernetes Workload Objekte”
und , Kubernetes Controller” als absolute Synonyme verwendet, obwohl dies nicht ganz
korrekt ist.

Workload-Objekte sind API-Objekte fir die Bereitstellung und Verwaltung von Anwendungen
und Services in Kubernetes. Ein Workload-Objekt definiert einen bestimmten gewiinschten
Zustand und Kubernetes sorgt dafiir, dass dieser Zustand aufrechterhalten wird.

Die Controller Uberwachen den aktuellen Zustand des Clusters und nehmen gegebenenfalls
Anderungen vor, um den Cluster in den gewiinschten Zustand (Desired State) zu bringen.

ReplicaSet

Ein ReplicaSet (auch ReplicaSet Controller genannt) sorgt fiir die Ausfihrung einer
bestimmten Anzahl von Pods (Repliken eines Pods) in einem Cluster.

Die Begriffe ReplicaSet und ReplicaSet Controller werden oft synonym verwendet. Technisch
gesehen handelt es sich um unterschiedliche Konzepte:

e Ein ReplicaSet ist ein Kubernetes-Objekt (YAML-Manifest). Es definiert, wie viele
Kopien eines bestimmten Pods ausgefiihrt werden sollen.

o Der ReplicaSet Controller ist der Teil der Kubernetes-Kontrollebene, der dafir
verantwortlich ist, dass die gewiinschte Anzahl von Pods eines ReplicaSets erhalten
bleibt.

Die Aufgabe des ReplicaSet Controllers ist es, zu erkennen, dass z.B. ein Pod (aus welchem
Grund auch immer) beendet wurde und der Cluster vom gewiinschten Zustand abweicht. In
diesem Fall sollte der ReplicaSet Controller den fehlgeschlagenen Pod |6schen und einen
Create Request an den API Server senden, um einen neuen Pod im Cluster zu erzeugen und so
den gewlinschten Zustand wiederherzustellen.

In den seltensten Fallen werden ReplicaSets direkt erstellt. In der Regel werden sie durch
Deployments erzeugt.

Die erforderlichen Elemente eines ReplicaSets sind:
e Pod Template
e Replicas
e Selector

Beispiel fiir eine ReplicaSet-Konfiguration:

apiVersion: apps/v1

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

kind: ReplicaSet

metadata:

name: mein-replicaset

spec:

replicas: 3

selector:

matchLabels:

app: mein-app
matchExpressions:

- {key: tier, operator: In, values: [frontend]}

template:

metadata:

labels:

app: mein-app
tier: frontend

spec:

containers:

- name: mein-super-container

image: mein-image

Erklarung:

replicas - Anzahl der gleichzeitig laufenden Pods.
selector - enthalt die matchLabels und/oder matchExpressions

o

matchLabels - ist ein Schliissel-Wert-Selektor . Alle von diesem ReplicaSet
verwalteten Pods haben das Label app und den Wert mein-app.
matchExpressions - kdnnen zusatzlich oder anstelle von matchLabels verwendet
werden und ermoglichen eine komplexere Logik bei der Auswahl von Pods.

template - hier werden die Eigenschaften der Pods definiert.

Die matchExpressions-Komponente besteht immer aus drei Teilen: key, operator und values.

key: Name des Labels, fiir das die Bedingung gilt.

operator: Der Operator, der die Bedingung definiert. Die giiltigen Operatoren

sind: In, NotIn, Exists und DoesNotExist

values: Ist eine Liste von Werten, die mit dem Label (key) verglichen werden. Dies ist nur fir
die Operatoren In und NotlIn relevant

o

In - Dieser Operator Uberprift, ob der gegebene Key in der Liste der angegebenen
Werte enthalten ist.

Notin - Dieser Operator ist das Gegenteil von In und Gberpriift, ob der gegebene
Key nicht in der Liste der Werte enthalten ist.

Exists - Gberprift, ob ein bestimmtes Label unabhangig von seinem Wert vorhanden
ist.

DoesNotExist - Dies ist das Gegenteil von Exists

Uberblick Giber die Architektur von Kubernetes - Anatoli Kreyman 30

Deployment

Wie bereits erwahnt, basieren Deployments auf ReplicaSets. Deployments ermaoglichen die
Aktualisierung oder Anderung von Anwendungen durch die Verwaltung der zugrunde
liegenden ReplicaSets. Dies geschieht durch die Erstellung neuer ReplicaSets und die
Anpassung ihrer GroRe bei gleichzeitiger Verkleinerung bestehender ReplicaSets. Dieser
Prozess ermoglicht sogenannte "Rolling Updates". Unter "Rolling Updates" versteht man das
schrittweise Hinzufligen neuer Objekte und das Entfernen alter Objekte ohne Ausfallzeiten.
Eine weitere wichtige Eigenschaft des Deployments ist die Moglichkeit, die vorgenommenen
Anderungen durch ein Rollback wieder riickgiangig zu machen.

Die Aktualisierung bzw. das "Rolling Update" von Container-basierten Anwendungen
funktioniert wie folgt:

e Im ersten Schritt wird ein neues ReplicaSet fiir die neue Version der Applikation (neues
Container-Image) bereitgestellt. Dieses neue ReplicaSet (R2) enthalt zunachst keine
Pods.

ReplicaSet

|
|
|
|
i
|

|
|

|

|

ReplicaSet

N e e e e e e e e e e e e . —— —— — -

\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
| :
I |
I I
I I
I |
[|
I I
[|
[|
[|
I I
|]

e Danach startet das Deployment neue Pods im neuen ReplicaSet und stoppt gleichzeitig
die alten Pods im alten ReplicaSet. Dies geschieht schrittweise, um sicherzustellen,
dass die Anwendung weiterhin verfiigbar ist und die Lastverteilung sichergestellt ist.

ReplicaSet

ReplicaSet

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

e Dieser Prozess wird fortgesetzt, bis alle alten Pods gestoppt und durch neue Pods
ersetzt wurden. Am Ende dieses Prozesses wird das alte ReplicaSet nicht geléscht und
bleibt mit 0 Pods bestehen. Dies ist notwendig, falls wahrend der Aktualisierung
Probleme auftreten und der Rollback-Prozess durchgefiihrt werden soll.

ReplicaSet

ReplicaSet

Deployment verwendet auch dieselben Labels, Selektoren und Operatoren wie ReplicaSets.

ReplicaSet vs. Deployment
ReplikaSet Deployment
ReplicaSets sind daflir verantwortlich, eine||Deployments ermdglicht die Bereitstellung neuer

bestimmte Anzahl von Pods einer bestimmten| |Versionen der Anwendungen durch die schrittweise
Spezifikation bereitzustellen und| [Erstellung der Pods in den neuen ReplicaSets und
aufrechtzuerhalten. die schrittweise Loschung der alten.

RollingUpdate — Parameter

Das RollingUpdate kann durch die beiden Parameter maxUnavailable und maxSurge gesteuert
werden. Der Parameter maxUnavailable gibt an, wie viele alte Pods gleichzeitig entfernt
werden kdnnen. Der Parameter maxSurge gibt an, wie viele neue Pods gleichzeitig erzeugt
werden kénnen. Beide Parameter sind optional und haben den Standardwert 1.

kubectl Befehle fir das Deployment

Hier sind die gangige kubectl Befehle, die dabei helfen, die Deployments im Cluster zu
verwalten und zu tGberwachen.

o kubectl get deployments - zeigt eine Liste aller Deployments im Cluster an.

e kubectl describe deployment <deployment-name> - gibt eine detaillierte Beschreibung
des angegebenen Deployments zurlick.

e kubect! scale deployment <deployment-name> --replicas=<number> - skaliert die
Anzahl der Replikate im Deployment auf die angegebene Anzahl.

o kubectl rollout status deployment <deployment-name> - Giberpriift den Rollout-Status
des Deployments.

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

e kubectl rollout undo deployment <deployment-name> - setzt den Rollout auf eine vorherige
Version des Deployments zurlick.

o kubectl rollout history deployment <deployment-name> - zeigt eine Liste der Rollout-Historie
des Deployments an.

e kubectl delete deployment <deployment-name> - |6scht das angegebene Deployment aus
dem Cluster.

DaemonSet

Das DaemonSet sorgt dafiir, dass eine Kopie eines bestimmten Pods auf allen oder einigen
Knoten eines Clusters lduft. Wenn ein neuer Knoten zum Cluster hinzugefiigt wird, startet das
DaemonSet einen Pod auch auf diesem Knoten. Mit ,einigen Knoten” ist gemeint, dass
DaemonSet so konfiguriert werden kénnen, dass sie nur auf bestimmten Knoten laufen.

Die DaemonSets in Kubernetes werden haufig fiir hauptsachlich technische Zwecke auf den
Knoten verwendet. Dazu gehdren: Logging-Dienste, Uberwachungssysteme, Netzwerkdienste
oder Sicherheitsdienste.

Im Gegensatz zu den anderen Kubernetes Controllern (ReplicaSets und Deployments)
verwendet das DaemonSet nicht nur Labels und Selectors, sondern auch das nodeSelector
oder nodeAffinity Attribut, um Pods einem bestimmten Node zuzuordnen.

Beispiel eines YAML-Manifestes flir DaemonSet:

apiVersion: apps/v1
kind: DaemonSet
metadata:
name: prometheus-daemonset
namespace: default
spec:
selector:
matchlLabels:
name: prometheus
template:
metadata:

labels:
name: prometheus

spec:

nodeSelector:
disk: ssd

containers:

- name: prometheus
image: prometheus:2.44.0
ports:

- containerPort: 80

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

StatefulSet

Ein Kubernetes StatefulSet ist eine weitere Kubernetes-Ressource, die fiir die Bereitstellung
und Skalierung einer Gruppe von Pods verwendet werden kann. Wie der Name StatefulSet
schon andeutet, handelt es sich bei StatefulSets um zustandsbehaftete Anwendungen. Die
von StatefulSet erzeugten Pod-Instanzen haben eine eindeutige und persistente Identitat.

Diese Identitat muss auch dann erhalten bleiben, wenn die Pods neu geplant, aktualisiert,
geléscht oder neu erstellt werden. Typische Anwendungsbeispiele fiir Stateful Pods sind
Datenbanken.

Hier sind einige der Hauptmerkmale von Stateful Pods:

e Alle Pods in einem StatefulSet missen eindeutige und unveranderliche
Netzwerkidentifikation (Netzwerknamen) haben.

e Jeder Pod kann einem oder mehreren Persistent Volumes zugewiesen werden. Es muss
sichergestellt sein, dass die Zuordnung zu bestimmten Volumes auch nach einem
Neustart weiterhin unverandert bleibt.

e Fir viele Anwendungen ist es dullerst wichtig, dass Pods in einer strikten Reihenfolge
erstellt, skaliert, geléscht und geschlossen werden. Nur so kann die Konsistenz der
Daten gewahrleistet werden.

Headless Service

Headless Services werden zusammen mit StatefulSets verwendet. Stateful-Anwendungen
erfordern oft eine direkte Kommunikation zwischen den Pods oder von aulierhalb des Clusters
zu einem bestimmten Pod. Dies wadre mit Mechanismen wie Load Balancer oder ClusterlP
kaum umsetzbar, daher wird Cluster DNS verwendet, um die gegenseitige Kommunikation der
Pods Gber den Namen zu ermdglichen.

Hier ist ein einfaches Beispiel fiir ein Kubernetes StatefulSet mit einem zugehorigen Headless
Service

apiVersion: v1
kind: Service
metadata:
name: mein-headless-service
spec:
clusterlP: None # None macht diesen Service zu einem Headless Service
selector:
app: meine-app
ports:
- protocol: TCP
port: 80
targetPort: 9376

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

apiVersion: apps/v1
kind: StatefulSet
metadata:
name: mein-statefulset
spec:
serviceName: "mein-headless-service"
replicas: 3
selector:
matchLabels:
app: meine-app
template:
metadata:

labels:
app: meine-app

spec:

containers:

- name: mein-container
image: meine-image
ports:

- containerPort: 9090

Jobs

Waéhrend alle oben genannten Controller-Typen fir den Start und den kontinuierlichen
Betrieb der Pods vorgesehen sind, besteht der Hauptzweck von Jobs darin, die einzelnen Tasks
in einem Kubernetes-Cluster auszufiihren.

Die folgenden drei Szenarien beschreiben die Funktionsweise von Jobs am besten:

e Der Job ist dafiir verantwortlich, einen oder mehrere Pods innerhalb des Kubernetes-
Clusters zu erstellen.

e Er sorgt auch dafiir, dass der Pod oder die Pods ein bestimmtes Programm in einem
Container ausfihren. Normalerweise sollte dieses Programm bis zu seinem
,natlirlichen Ende” laufen. Es sei denn, es wird aufgrund eines Fehlers oder aus einem
anderen Grund unterbrochen.

e Danach muss der Kubernetes-Job sicherstellen, dass die angegebene Anzahl von Pods
ihre Aufgaben erfolgreich abgeschlossen hat. Wenn dies nicht der Fall ist, startet der
Job diese Pods neu, um sicherzustellen, dass die Tasks abgeschlossen sind.

Jobs kdnnen parallel oder seriell ausgefiihrt werden und erzeugen mindestens einen Pod, der
die Aufgabe ausfiihrt. Nach Beendigung des Jobs werden die Pods automatisch geldscht.

Hier ist ein Beispiel einer einfachen Wartungsaufgabe. Im Container mein-container werden
die Daten aus dem Ordner /var/log geloscht, wenn sie dlter als 7 Tage sind:

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

apiVersion: batch/v1
kind: Job
metadata:
name: log-cleaner
spec:
template:
spec:

containers:

- name: log-cleaner
image: mein-container
args:

- /bin/sh

e

- find /var/log -type f -mtime +7 -delete
restartPolicy: OnFailure

Cronlobs

Ein CronJob wird verwendet, um eine bestimmte Aufgabe in regelmdfligen Abstanden
automatisch auszufiihren. Im Gegensatz zu einem "normalen" Job, der nur einmal ausgefiihrt
wird, kann ein CronJob nach einem bestimmten Zeitplan ausgefiihrt werden. Dieses Konzept
ahnelt dem UNIX- oder Linux-CronJob.

Healthcheck-Objekte

Liveness, Readiness und Startup Probes sind Mechanismen in Kubernetes, um die Gesundheit
von Containern in einem Pod zu lberwachen und sicherzustellen, dass sie ordnungsgemaf
funktionieren.

Liveness Probe

Die Liveness Probe priift, wie der Name schon sagt, ob ein Container noch lauft. Wenn die
Liveness Probe fehlschlagt, wird der Container neu gestartet.

Die Uberpriifung des Containerstatus kann wie folgt durchgefiihrt werden: Es wird ein HTTP-
Request an eine bestimmte URL oder einen bestimmten Port des Containers gesendet,
solange eine erwartete Antwort zurlickgegeben wird, wird der Container als ,lebendig”
markiert. Es kann auch ein bestimmter Befehl innerhalb des Containers ausgefiihrt werden.

Hier ist ein Beispiel fiir eine Liveness Probe, die alle 10 Sekunden eine HTTP-Anfrage an die
URL "/healthcheck" sendet:

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

apiVersion: v1
kind: Pod
metadata:

name: mein-pod

spec:

containers:

- name: mein-container
image: mein-image
livenessProbe:

httpGet:
path: /healthcheck
port: 80
periodSeconds: 10

Readiness Probe

Die Readiness Probe priift, ob der Container im Pod bereit ist, eingehende Netzwerkanfragen
zu empfangen. In diesem Fall ist die Readiness Probe der Liveness Probe sehr dhnlich, jedoch
mit einem wichtigen Unterschied. Wenn die Readiness Probe eines Containers fehlschlagt,
wird Kubernetes keinen Netzwerkverkehr mehr an diesen Container senden, aber der
Container wird nicht neu gestartet.

Ein typischer Anwendungsfall flir eine Readiness Probe ware, dass eine Anwendung eine
gewisse Zeit bendtigt, um zu starten (z.B. eine Datenbankverbindung zu einem Backend-
Server herzustellen), bevor sie Anfragen bearbeiten kann.

Hier ist ein Beispiel fiir eine Readiness Probe, die alle 5 Sekunden eine TCP-Verbindung zum
Port 8080 herstellt:

apiVersion: v1
kind: Pod
metadata:

name: mein-pod

spec:

containers:

- name: mein-container
image: mein-image
readinessProbe:

tcpSocket:
port: 8080
periodSeconds: 10

Startup Probe
Die Startup-Probe priift, ob die Anwendung im Container erfolgreich gestartet wurde. Dieser

Test wird verwendet, wenn die Anwendung viel Zeit zum Starten benétigt (eine lange
Initialisierungsphase hat).

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

Wenn die Probe erfolgreich ist, wird davon ausgegangen, dass der Container korrekt gestartet
wurde. Wenn die Startup-Probe fehlschlagt, wird der Container neu gestartet.

Die Startup Probe kann verhindern, dass Kubernetes den Container standig neu startet, weil
die Liveness Probe fehlschlagt, weil die Anwendung noch nicht initialisiert wurde.

Hier ist ein Beispiel fiir eine Startup Probe, die einen HTTP-Request an die URL "/startCheck"
sendet und den Container als erfolgreich gestartet markiert, wenn eine erfolgreiche Antwort
zurlickgegeben wird:

apiVersion: v1
kind: Pod
metadata:

name: mein-pod

spec:

containers:

- name: mein-container
image: mein-image
startupProbe:

httpGet:
path: / startCheck
port: 8080
failureThreshold: 30
periodSeconds: 10

Taints und Tolerations

Taints und Tolerations sind Mechanismen, die sicherstellen, dass Pods nicht auf ungeeigneten
Kubernetes-Knoten geplant oder platziert werden. In Bezug auf Kubernetes kann der Begriff
Taints mit markiert oder gekennzeichnet (ibersetzt werden. Taints und Tolerations sind
untrennbar miteinander verbunden, da sie als Paar arbeiten. Taints werden zu Knoten
hinzugefiigt, wahrend Tolerations in der Pod-Spezifikation definiert werden. Wenn ein Taint
zu einem Knoten hinzugefiigt wird, werden alle Pods abgelehnt, die keine Toleration fir
diesen Taint haben.

Taints und Tolerations- technische Umsetzung
Die technische Umsetzung ist relativ einfach. Die Worker-Knoten miissen mit entsprechenden

Taints versehen werden, z.B. wir wollen erreichen, dass auf den Knoten wn-01 und wn-02 nur
die Pods ausgefihrt werden, die mit dem Taint ,,monitoring” versehen sind.

Die untere Befehle werden den Taint "monitoring" zu den Knoten wn-01 und wn-02 hinzufiigt.
Dabei wird die Option "NoSchedule" verwendet. (wird weiter unter erklart).

kubectl taint nodes wn-01 monitoring:NoSchedule
kubectl taint nodes wn-02 monitoring:NoSchedule

Weiterhin muss eine YAML-Datei erstellt werden, die diesen Taint macht.

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

apiVersion: apps/v1
kind: Deployment
metadata:
name: mein-deployment
spec:
replicas: 3
selector:
matchlLabels:
app: mein-app
template:
metadata:
labels:
app: mein-app
spec:
containers:
- name: mein-app
image: nginx
tolerations:
- key: "monitoring"
operator: "Exists"
effect: "NoSchedule"

Hier ist die visuelle Darstellung der Konfiguration:

tolerations:
nonitoring”
operator: "Exists"
effect: "NoSchedule”

monitoring:NoSchedule J monitoring:NoSchedule

Taint-Optionen

e NoSchedule - bedeutet, dass der Kubernetes Scheduler keine neuen Pods auf dem
Knoten zuldsst, wenn diese den Taint nicht tolerieren. NoSchedule hat keinen Einfluss
auf Pods, die bereits auf dem Knoten laufen.

e PreferNoSchedule - in diesem Fall versucht der Kubernetes Scheduler die Planung von
Pods zu vermeiden, die keine Toleranz fiir fehlerhafte Knoten haben. Diese Option wird
verwendet, wenn keine besser geeigneten Knoten verfligbar sind.

Uberblick Giber die Architektur von Kubernetes - Anatoli Kreyman 39

e NoExecute — dies ist die hartere Version von ,NoSchedule”. NoExecute entfernt
(evakuiert) Pods, die bereits auf dem Knoten laufen, wenn sie den Taint nicht
tolerieren.

Typische Anwendungsfille

Der NoSchedule-Effekt wird hdufig verwendet, wenn die Notwendigkeit besteht, Worker-
Knoten fiir bestimmte Aufgaben oder Benutzergruppen zu reservieren oder sicherzustellen,
dass nur bestimmte Pods auf Knoten mit spezieller Hardware (wie z.B. wie GPUs) geplant
werden.

Ein Beispiel ist die garantierte Nutzung durch eine bestimmte Benutzergruppe oder die
Verwendung einer bestimmten Hardware:

kubectl taint nodes <nodename> cityCologne:NoSchedule
kubectl taint nodes <nodename> grafikkarte:NoSchedule

Wenn es notwendig und sinnvoll ist, kdnnen die Taints ein wenig komplexer sein, z.B:

kubectl taint nodes <node-name> grafikkarte=true:NoSchedule

In diesem Fall wird die Tolerations in spec so aussehen:

spec:
containers:

- name: pod-name
image: image-name

tolerations:

- key: "grafikkarte"
operator: "Equal"
value: "true"
effect: "NoSchedule"

Der NoExecute-Effekt wird in den folgenden Situationen verwendet:

Der andere Anwendungsfall ware, wenn ein Knoten aufgrund eines Netzwerkausfalls oder aus
anderen Grinden nicht erreichbar ist. In diesem Fall kann dem Knoten kein Taint direkt
zugewiesen werden, sondern der Zustand des Knotens als wird in der Kubernetes APl mit dem
Schlissel "nicht erreichbar" (node.kubernetes.io/unreachable) oder "nicht bereit"
(node.kubernetes.io/not-ready) markiert und dem Effekt NoExecute zugewiesen. Die
Unterschiede zwischen unreachable und not-ready werden weiter unten erklart.

Zusatzlich kann dem Taint eine tolerationSeconds-Option hinzugefiigt werden. Die Option
tolerationSeconds bestimmt, wie lange der Knoten von der Verteilung ausgeschlossen
bleibt. Der Standardwert ist 300 Sekunden, kann aber in der Pod-Spezifikation Gberschrieben
werden.

Hier ist die Liste der Labels, die zur Beschreibung des Knoten-Zustandes eingesetzt werden.
Die Labels werden nicht nur in Verbindung mit Taints verwendet.

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

Zustand Beschreibung

not-ready wird automatisch hinzugefiigt, wenn der Status des
Kubelet Heartbeats von Ready zu NotReady wechselt. Der mogliche
node.kubernetes.io/not-ready Anwendungsfall konnte z.B. sein, dass der Control-Node den Worker
zwar netzwerktechnisch erreicht, aber den Workload nicht ausfithren
kann.

unreachable wird ebenfall automatisch hinzugefiigt, wenn der
Kubernetes Control-Nodes keine Verbindung zum Worker-Nodes
herstellen kann

(Netzwerkprobleme, Worker heruntergefahren, Kubelet lduft nicht)

node.kubernetes.io/unreachable

unschedulable bedeutet, dass keine neuen Pods auf dem Knoten
geplant werden kdnnen. Dies kann durch den Administrator oder
aufgrund von Ressourcenknappheit festgelegt werden (die drei
unteren Punkte).

node.kubernetes.io/unschedulable

node.kubernetes.io/network- network-unavailable bedeutet, dass das Netzwerk des Knoten nicht
unavailable verflgbar ist

memory-pressure bedeutet, dass der Speicher auf dem Knoten
knapp wird und der Workload moglicherweise nicht mehr ausgefiihrt
werden kann.

node.kubernetes.io/memory-
pressure

disk-pressure weist auf eine hohe Auslastung der Festplatten auf den

de.kub tes.io/disk- .
node.kubernetes.io/disk-pressure Knoten hin

pid-pressure bedeutet, dass die Anzahl der noch verfiigbaren
node.kubernetes.io/pid-pressure [Prozess-IDs (PIDs) auf dem Knoten knapp wird und neue Prozesse
nicht gestartet werden kdnnen.

Alle oberen Labels werden abhangig vom Knotenstatus mit dem Befehl kubect! describe
node angezeigt:

e not-ready und unreachable im Abschnitt Taints.

e network-unavailable, memory-pressure, disk-pressure und pid-pressure im
Abschnitt Conditions.

¢ Unschedulable kommt separat.

NodeSelector

NodeSelector ist eine relativ einfache Methode, um einen Pod einem bestimmten Node
zuzuweisen. Die Konfiguration des NodeSelectors erfolgt durch Zuweisung von Schliissel-
Wert-Paaren in der Pod-Spezifikation.

In unserem Beispiel wollen wir sicherstellen, dass bestimmte Knoten nur auf den Pods laufen,
die mit SSDs ausgestattet sind. Zuerst weisen wir einem Node ein Label zu:

kubectl label nodes <podname> disktype=ssd

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman 41

So kann die dazugehorige Pod-Konfiguration aussehen:

apiVersion: v1
kind: Pod
metadata:
name: mein-pod
spec:
containers:
- name: mein-container
image: mein-nginx
nodeSelector:
disktype: ssd

Node Affinity

Node Affinity kann als Erweiterung von NodeSelector angesehen werden. Node Affinity bietet
mehr Flexibilitat und kann zwischen , erforderlichen" oder , harten” Regeln und "bevorzugten"
oder ,,weichen” Regeln unterscheiden.

Die Trennung zwischen den erforderlichen und den bevorzugten Anforderungen erfolgt auf
der Grundlage dieser Optionen:

requiredDuringSchedulinglgnoredDuringExecution - harte Anforderung
preferredDuringSchedulinglgnoredDuringExecution - weiche Anforderung
Die folgenden Beispiele veranschaulichen diese Optionen:

Labels hinzufligen:

kubectl label nodes <node-name> disk=ssd-satab
kubectl label nodes <node-name> disk=ssd-nvme

Aufgrund der harten Anforderung kénnen Pods nur auf Knoten mit dem Label ,,disk” und dem
Wert "ssd-nvme" geplant werden. Wenn kein solcher Knoten vorhanden ist, werden die Pods
nirgendwo gestartet.

apiVersion: apps/v1
kind: DaemonSet
metadata:
name: prometheus-daemonset
namespace: default
spec:
selector:
matchlLabels:
name: prometheus
template:
metadata:
labels:
name: prometheus
spec:

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

affinity:
nodeAffinity:
requiredDuringSchedulinglgnoredDuringExecution.
nodeSelectorTerms:
- matchExpressions:
- key: disk
operator: In
values:
- ssd-nvme

containers:

- name: prometheus
image: prometheus:2.44.0
ports:

- containerPort: 80

Aufgrund der weichen Anforderung werden Pods auf Knoten mit dem Label ,,disk” und dem
Wert "ssd-sata6" eingeplant, wenn diese vorhanden sind. Ist dies nicht der Fall, werden
beliebige Knoten verwendet.

kind: DaemonSet
metadata:
name: prometheus-daemonset
namespace: default
spec:
selector:
matchlLabels:
name: prometheus
template:
metadata:

labels:
name: prometheus

spec:

affinity:
nodeAffinity:

preferredDuringSchedulinglgnoredDuringExecution:
- weight: 1
preference:
matchExpressions:
- key: disk
operator: In
values:
- ssd-satab

containers:

- name: prometheus
image: prometheus:2.44.0
ports:

- containerPort: 80

Uberblick Giber die Architektur von Kubernetes - Anatoli Kreyman 43

Der Parameter weight wird in preferredDuringSchedulinglgnoredDuringExecution
verwendet und kann einen Wert zwischen 1 und 100 haben. Der Wert stellt die Prioritat dar,
je hoher der Wert, desto mehr wird dieses Pod vom Scheduler bevorzugt.

Damit der Parameter weight richtig verwendet werden kann, sollten die Optionen
(preferredDuringSchedulinglgnoredDuringExecution) mit mehreren Auswahlmoglichkeiten
versehen und entsprechend gewichtet werden. So sieht eine mogliche Konfiguration aus:

preferredDuringSchedulinglgnoredDuringExecution:
- weight: 1
preference:
matchExpressions:
- key: disk
operator: In
values:
- ssd-satab
- weight: 5
preference:
matchExpressions:
- key: disk
operator: In
values:
- ssd-nvme

Pod Affinity / Pod Anti-Affinity
Pod Affinity

Pod Affinity stellt sicher, dass einzelne Pods oder eine Gruppe von Pods auf demselben Knoten
(oder einer Gruppe von Knoten) ausgefiihrt werden. Dies ist flir Anwendungen interessant,
die in einer gewissen Abhangigkeit zueinander stehen und eine optimale
Netzwerkkommunikation bendétigen.

Analog zu den Node Affinity verwenden Pod Affinity gleiche Mechanismen:

e requiredDuringSchedulinglgnoredDuringExecution
o preferredDuringSchedulinglgnoredDuringExecution

Im folgenden Beispiel wird der Scheduler versuchen, die drei Pods des Webservers auf dem
gleichen Knoten zu platzieren, auf dem bereits die Datenbank ("app=database") lduft.

apiVersion: apps/v1
kind: Deployment
metadata:

name: web-server
spec:

replicas: 3

selector:

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

matchlLabels:
app: web-server
template:
metadata:
labels:
app: web-server
spec:
affinity:
podAffinity:
requiredDuringSchedulinglgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: app
operator: In
values:
- database
topologyKey: "kubernetes.io/hostname"
containers:
- name: web-server
image: web-server-container

Die Bindung an einen Knoten wird durch das Schliissel-Wert-Paar bestimmt: topologyKey:
"kubernetes.io/hostname". Die Manifestdatei flir das Datenbank-Deployment muss
dementsprechend das Schlissel-Wert-Paar "app: database" enthalten. Mogliche Operatoren
sind: In, NotlIn, Exists, DoesNotExist, Lt, Gt.

Datenbank-Deployment:

apiVersion: apps/v1
kind: Deployment
metadata:
name: database
spec:
replicas: 1
selector:
matchlabels:
app: database
template:
metadata:
labels:
app: database
spec:
containers:
- name: database
image: meine-database

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

Hier ist ein weiteres Beispiel von der offiziellen Kubernetes-Seite. In diesem Fall erfolgt die
Platzierung der Pods anhand eines Topologie-Labels "topology.kubernetes.io/zone"
(geografische Zone eines Cloud-Providers). Pods werden entweder in europa-nord oder
europa-west platziert.

affinity:
nodeAffinity:
requiredDuringSchedulinglgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: topology.kubernetes.io/zone
operator: In
values:
- europa-nord
- europa-west

Pod Anti-Affinity

Pod Anti-Affinity ist natirlich das Gegenteil von Pod Affinity. Mit Pod Anti-Affinity kann
sichergestellt werden, dass bestimmte Pods nicht auf demselben Knoten laufen. Diese Option
kann bei der Planung von Hochverfiigbarkeit nitzlich sein. Mit Pod Anti-Affinity kann
verhindert werden, dass Pods, die den gleichen Dienst ausfiihren, auf dem gleichen Node
laufen.

Auch hier gelten dieselben Mechanismen:

e requiredDuringSchedulinglgnoredDuringExecution
o preferredDuringSchedulinglgnoredDuringExecution

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/

Kubernetes Netzwerk

Das Kubernetes-Netzwerk ist ein virtuelles Netzwerk, welches in erster Linie dazu dient, die
Kommunikation zwischen den Pods und anderen Services/Komponenten im Kubernetes
Cluster zu ermoglichen.

Das Kubernetes-Netzwerk unterscheidet sich von anderen Netzwerktypen in mehreren
Bereichen:

CNI-Plugin

Das CNI-Plugin (CNI steht fiir Container Networking Interface) ist in Grunde genommen eine
Spezifikation fiir verschiedene Netzwerk-Plugins in Kubernetes. Das CNI-Plugin selbst dient zur
Verwaltung der Netzwerkverbindungen zwischen Pods und Diensten innerhalb des Clusters.
Es existiert bereits eine breite Palette von CNI-Plugins, die die Basis-Funktionalitat wesentlich
erweitern konnen. Mehr dazu auf dieser Seite www.github.com/cni

Service-Discovery

Service-Discovery wie der Name auch sagt, dient zur Erkennung der Services innerhalb eines
Clusters, besonders wenn diese aus mehreren Containern bestehen und auch auf
verschiedenen Knoten laufen. AuBerdem ermdoglicht Service-Discovery den Pods, andere Pods
und Services im Cluster zu finden, ohne spezifische IP-Adressen kennen zu missen.

Network-Policies

Die Network-Policies konnen den Netzwerkverkehr zwischen den Pods und Servicesim
Kubernetes Cluster steuern. Die ermoglichen auch den Netzwerk-Traffic basierend auf IP-
Adressen, Ports und anderen Merkmalen zu filtern.

Pod-to-Pod-Kommunikation
Die Pods, die auf verschiedenen Nodes aufgefiihrt werden, kdnnen miteinander ohne
zusatzlichen speziellen Konfigurationen kommunizieren.

Netzwerk-Arten im Kubernetes Cluster

In einem Kubernetes-Cluster gibt es drei Arten von Netzwerken: das Node Network, das Pod
Network / Cluster Network und das Service Network. Jedes Netzwerk erfullt seine spezifische
Rolle im Cluster.

e Node Network - Kommunikation zwischen den verschiedenen Worker- und Control-
Knoten im Cluster.

e Pod Network - Kommunikation zwischen den einzelnen Pods im Cluster.

e Service Network - Abstrakte Schicht, die stabile Netzwerkzugriffspunkte fiir einen oder
mehrere Pods bereitstellt.

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

https://github.com/containernetworking/cni

Node Network

Worker 01 Worker 02 Worker 03

192 .168.1.171 192.168.1.172

192 168.1.170 192.168.1.173

F Y

Cluster Network

Das Node Network wird von Kubernetes verwendet, um die Kommunikation zwischen den
Nodes im Cluster zu ermdglichen. Das Node Network wird fiir folgende Zwecke genutzt: den
Clusterzustand zu synchronisieren, zur Lastverteilung zwischen den Nodes, fiir den Zugriff
auf gemeinsam genutzte Ressourcen wie z.B. Storage.

anatoli@admin-vm:~/cert-manager$ kubectl get nodes -o wide

NAME ~ STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-IP 05-IMAGE KERNEL -VERSION CONTAINER-RUNTIME
cn@1 Ready control-plane 18d v1.25. <none> Ubuntu 20.04. .4.0 generic containerd://1.6.12
Ubuntu 20.04.5 S 5.4.0 i containerd://1.6.12

wn0l Ready = 18d v1.25.5 G <
wnd2 Ready o> 17d il 25y 5 < > Ubuntu 20.04.° 4.0 ric containerd://1.6.12
’ i

wn03 Ready 17d v1.25.5 Ubuntu 20.04.5 5.4.9-137-gener ic containerd://1.6.12

Pod Network / Cluster Network

Worker Node
~ ~

Q===

Ty
[\l:nntainerﬂ I:I:IHtEiI'IEI'm Eﬂntainerm [:nnta‘\nerﬂ |

L e

Pod 02 Pod 03
Pod 01 Network Namespace Network Namespace Network Namespace
\ eth0 > eth0 |78

> &n <=

Virtual Bridge

!

]

Ll
~ [etho
node

Das Pod Network dient verstandlicherweise fir die Kommunikation zwischen den Pods in
einem Cluster, unabhangig davon auf welchen Cluster diese ausgefiihrt werden. Jeder Pod im
Cluster hat seine eindeutige IP-Adresse, die innerhalb des gesamten Clusters nur einmal
vorkommt. Das Pod-Netzwerk in Kubernetes wird durch CNI-Plugins bereitgestellt und
verwaltet. Die Funktionsweise von CNI-Plugins wird weiter ndher erlautert.

Die Begriffe "Cluster-Network" und "Pod-Network" werden oft als Synonyme gesehen. Da es
in beiden Fallen um die Bereiche handelt, die fiir die Kommunikation zwischen Pods im Cluster
verwendet werden.

Uberblick Giber die Architektur von Kubernetes - Anatoli Kreyman 48

Auf dem unteren Bild werden die IP-Adressen des Pod-Netzwerks angezeigt, die bei der
Konfiguration von Calico-Plugln eingegeben wurden.

anatoli@dmin-vm:~$ kubectl get pods -o wide
READY STATUS RESTARTS NODE NOMINATED NODE READINESS GATES
4cd-dtcnj 1/1 Running @ 1 wno3 < =3 <NONE
1/1 Running 2] wni?2
1/1 Running [¢]] wno3
171 Running e wnol
1/1 Running 8] wnb2

<
<
<
<

Service Network

Dieser IP-Bereich wird fiir die Kubernetes-Services verwendet. Der Zweck des Service-
Netzwerks besteht darin, einem oder mehreren Pods, die den gleichen Service reprasentieren,
eine eindeutige IP-Adresse und einen eindeutigen DNS-Namen zuzuweisen.

Wenn die Konfiguration von Service Network nicht gedandert wurde, werden die IP-Adresse
aus dem Bereich 10.96.0.0/12 zugewiesen. So lasst sich die Konfiguration verifizieren:

kubect! get pods -n kube-system
kubect! describe pod <APl SERVER_POD NAME> -n kube-system
Nach ,--service-cluster-ip-range “suchen.

Service Networks beinhaltet eine Reihe von Komponenten oder bessergesagt dazugehdrigen
Objekten:

Service-Objekt ist sozusagen ein Kern-Objekt des Service Networks und sorgt dafiir, dass die
zugrunde liegenden Pods lber dauerhaften IP-Adressen oder DNS-Namen (abhangig vom
Service-Typ) erreichbar sind. Dadurch wird erreicht, dass die IP-Adresse oder der DNS-Name
des Services unverandert bleibt, auch dann, wenn die IP-Adressen der zugrundeliegenden
Pods gedandert werden.

Label-Selectors sorgen dafiir, dass z.B. der Datenverkehr zu einer Gruppe von Pods geleitet
wird, wenn diese Pods mit entsprechenden Labels versehen sind.

Load Balancing diese Option ist eigentlich selbsterklarend. LB sorgt flir den gleichmaRigen
Lastausgleich zwischen den verfligbaren Pods, die zum selben Service gehoéren.

Service-Typs es handelt sich dabei um die Methode, wie auf einen Service (z.B. ClusterlP,
NodePort usw.) zugegriffen wird. Mehr dazu in Teil 2 des Beitrages.

EndpointSlice ist ein API-Objekt, welches von Control Nodes erstellt wird und Informationen
Uber verfligbare Dienstinstanzen (Pods) und deren IP-Adressen/Ports speichert. Die
Funktionsweise von EndpointSlice ist besonders dann sichtbar, wenn ein Service aus mehreren
Pods besteht. EndpointSlice hilft dabei, den eingehenden Datenverkehr auf die Pods zu
verteilen, indem es die Zuordnung von IP-Adressen und Ports zu den Pods organisiert und
bereitstellt.

Uberblick Giber die Architektur von Kubernetes - Anatoli Kreyman 49

https://www.kreyman.de/index.php/kubernetes/261-kubernetes-netzwerk-architektur-service-typen

Kubernetes Ingress

!

‘ Ingress Controller

Path-based routing Name Based Virtual Hosts TLS Termination
|

T e [—

000 000 00

e e Kubernetes Cluster SR d

Ingress ist eine Kubernetes-Ressource, die den Zugriff auf Services eines Clusters von aullen
ermoglicht. Ingress bietet mehrere Optionen zur Steuerung des eingehenden
Netzwerkverkehrs. Der Traffic kann basierend auf Namen, Pfaden oder verschiedene Dienste
innerhalb des Clusters verteilt werden. Ingress kann die Aufgaben eines Reverse Proxy
Ubernehmen und somit den Zugriff auf einen oder mehrere interne Server von aufien steuern.
AuBerdem kann zur SSL-Terminierung verwendet werden, um den SSL-Datenverkehr an einen
Service weiterzuleiten.

3 i i

I
|
|
|
|
|
|
|
|
|
|
[
|
I
I
|
|
\

Des Weiteren werden einige Ingress-Funktionsweisen erklart:

Name-based Virtual Hosts

Ingress kann den eingehenden Datenverkehr basierend auf Hostnamen auf unterschiedliche
Services innerhalb desselben Clusters verteilen. Diese Methode ist nitzlich, wenn mehrere
Anwendungen auf derselben Infrastruktur ausgefiihrt werden, z.B. wenn eine Anwendung
unter appl.demo.de und eine andere unter app2.demo.de verfiigbar sein sollte.

Path-based Routing

Ingress kann auch das Routing des eingehenden Datenverkehrs basierend auf bestimmten
Pfaden bedienen. Das bedeutet, dass unterschiedliche Pfade auf verschiedene Services
innerhalb des Clusters verweisen konnen, die aber auf denselben Cluster-IP-Adressen laufen.
So lasst sich folgendes Szenario umsetzen, dass eine Anfrage an /app1 auf einen Service und
eine Anfrage an /app2 auf einen anderen Service geroutet wird.

TLS Termination

Wie oben bereits erwahnt, kann auch Ingress als TLS-Terminierungspunkt dienen. Ingress kann
die Entschlisselung des eingehenden Datenverkehrs ibernehmen und die Daten an den
entsprechenden Service weiterleiten.

Service APl vs. Ingress

Der Hauptunterschied zwischen der Kubernetes Service APl und Ingress besteht darin, dass
Kubernetes Service APl auf OSI Layer 4 (Transport Layer) und Ingress auf OSI Layer 7
(Application Layer) arbeitet, und somit eine erweiterte Funktionalitat fir die Verarbeitung von

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

HTTP-Verkehr bietet. Wenn es bei OSI Layer 4 hauptsachlich darum geht, die Datenpakete
erfolgreich vom Sender zum Empfanger zu Ubertragen, beschéftigt sich Layer 7 mit den
Anwendungen, die auf dieser Ebene tatig sind (z.B. E-Mail, Webbrowser usw.). Auch die
Implementierung von Load Balancing Algorithmen oder TLS-Verschlisselung findet auf der
Anwendungsebene statt.

Zusatzlich zum Ingress-Controller etabliert sich die Gateway APl als moderner Standard fur
das Traffic-Management, da sie rollenbasierte Konfigurationen und erweiterte Routing-
Funktionen bietet.

Open Source Ingress Controller

Es gibt verschiedene Open-Source-Ingress-Controller, die mit Kubernetes verwendet werden
konnen. Die drei verbreitetste sind: Nginx, Traefik und Contour. Wobei Nginx Ingress
Controller scheint der populdrste von allen zu sein. Alle drei Controller haben dhnliche
Funktionen (Reverse-Proxy, Load-Balancer, TLS-Terminierung) und unterscheiden sich in der
Architektur und Implementierung. Die Wahl hangt von den spezifischen Anforderungen und
Vorlieben ab.

Ingress Beispiel
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: test-ingress
annotations:
nginx.ingress.kubernetes.io/rewrite-target: /
spec:
rules:
- host: demo.de
http:
paths:
- path: /app
pathType: Prefix
backend:
service:
name: test-service
port:
name: http

Im oberen Beispiel wird ein Ingress Controller mit dem Namen test-ingress erstellt. Der
Hostnamen demo.de wird verwendet. Alle Anfragen, die auf den Pfad /app beginnen, werden
an den Service mit namens test-serviceund dem Port http weitergeleitet. Die
Annotation nginx.ingress.kubernetes.io/rewrite-target: /sorgt dafir, dass alle eingehende
Anfragen an den Pfad / der Ziel-Service weitergeleitet werden.

Kubernetes Egress
Egress ist ein Antipode von Ingress. Egress beschaftigt sich verstandlicherweise mit den

ausgehenden Datenverkehr zu den externen Ressourcen oder APls. Mit Egress lassen sich
ebenfalls unterschiedliche Regeln definieren, um den Datenverkehr auf der Basis

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

https://www.nginx.com/
https://traefik.io/traefik/
https://projectcontour.io/

verschiedenen Attributen wie z.B. IP-Adressbereiche, Ports, Protokolle, Namespace-, Pod-,
oder Service-Labels zu steuern. Die Egress-Regeln werden in den Network Policies
konfiguriert.

Egress Beispiel
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: allow-egress
spec:
podSelector: {}
policyTypes:
- Egress
egress:
- to:
- ipBlock:
cidr: 10.0.0.0/24
except:
-10.0.0.2/32

In diesem Bespiel wird eine Network Policy namens allow-egress. Die Policy wird auf alle Pods
angewendet. Der Policy-Typ Egress zeigt, dass es sich um den ausgehenden Datenverkehr
handelt. In diesem Beispiel darf der ausgehende Datenverkehr nur an einen bestimmten IP-
Bereich (in diesem Fall 10.0.0.0/24) geleitet werden, aulRer einer Ausnahme (10.0.0.2).

Kubernetes DNS

Kubernetes DNS (Domain Name System) ist eine integrierte Funktion von Kubernetes, die es
Containern und Services im Cluster ermoglicht, Gber DNS-Namen, anstatt (iber IP-Adressen zu
kommunizieren. Dadurch kann die Kommunikation zwischen Containern und Services
vereinfacht werden. (ab der Version 1.21 ist nicht mehr supportet)

Im Kubernetes Cluster wird der DNS-Service in diesem Format
"service.namespace.svc.cluster.local" verwendet.

Kubernetes CoreDNS

Kubernetes CoreDNS ist ein spezielles DNS-Plugin, das als Standard-DNS-Server in Kubernetes-
Clustern verwendet wird. CoreDNS erweitert die Basis-Funktionen und gibt z.B. die
Moglichkeit, mehrere Domainnamen zu verwenden und DNS-Anfragen auf externe DNS
weiterzuleiten. Ab der Version v1.26 ist CoreDNS die einzige unterstlitzte Cluster-DNS-
Anwendung.

Hier sind die Vorteile aus der offiziellen Seite von CoreDNS: https://coredns.io

o Flexibilitat: CoreDNS ist sehr flexibel und ermoglicht es Benutzern, benutzerdefinierte
DNS-Server zu erstellen.

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

https://de.wikipedia.org/wiki/Domain_Name_System
https://coredns.io/
https://coredns.io/

e Einfachheit: CoreDNS verwendet einfache und verstandliche textbasierte
Konfigurationsdateien Corefile).

e Performance: CoreDNS ist darauf ausgelegt eine hohe Leistung und geringe Latenzzeiten
zu bieten.

e Erweiterbarkeit: Die CoreDNS Plugin-Architektur gibt es die Moglichkeit, neue
Funktionen hinzuzufiigen oder vorhandene Funktionen zu erweitern.

e DNS-Protokolle: CoreDNS unterstiitzt sowohl DNS-over-HTTP (DoH) als auch DNS-over-
TLS (DoT)

So lassen sich DNS- oder CoreDNS-Pods anzeigen:

kubect! get pods --namespace=kube-system -/ k8s-app=kube-ans

Kubernetes Netzwerk-Plugins / Container Networking Interface (CNI)

Wenn man Uber Kubernetes Netzwerk-Plugins und CNI-Plugins spricht, ist meist dasselbe
gemeint. CNl ist auch als eine Spezifikation zu verstehen, die von der Cloud Native Computing
Foundation (CNCF) entwickelt wurde. Die Plugins erweitern die integrierte
Netzwerkfunktionalitdt von Kubernetes wie z. B. Cluster-IP, NodePort oder LoadBalancer.
Besonders in einem groRRen Cluster (mit vielen Pods und Nodes) kann die Nutzung von Plugins
fiir bessere Skalierbarkeit und effizientere Lastverteilung sorgen sowie im Bereich Sicherheit
viele Vorteile bieten. Die CNI-Plugins konnen verschiedene Arten von Netzwerken
bereitstellen: Overlay-Netzwerke, Bridge-Netzwerke und Layer 3-Netzwerke.

Kubernetes unterstiitzt eine Vielzahl von CNI-Plugins, darunter Flannel, Cilium, Calico, Weave
Net und andere. Die Wahl des CNI-Plugins hangt von den spezifischen Anforderungen und der
Infrastruktur des Kubernetes-Clusters ab. Weitere Information zum Thema: www.cni.dev und
www.github.com/containernetworking/plugins

Service-Typen

Wie wir bereits wissen, werden Anwendungen in Kubernetes innerhalb von Pods
bereitgestellt und miissen sowohl untereinander als auch nach auRen kommunizieren. Um
diese Kommunikation zu ermdéglichen und zu vereinfachen, stellt Kubernetes verschiedene
Service-Typen zur Verflugung. Die Service-Typen dienen als Abstraktionsschicht, um eine
Netzwerkverbindung zwischen den verschiedenen Pods innerhalb des Clusters und Objekten
auBerhalb des Clusters bereitzustellen.

Weiter geht es um folgende Kubernetes-Komponenten bzw. Service-Typen:

e ClusterlP

e NodePort

e LoadBalancer
e ExternallPs

e ExternalName

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

http://www.cni.dev/
http://www.github.com/containernetworking/plugins

ClusterlP

v

.

|
|
!
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\

e e | Kubemetes Cluster

Die Cluster-IP ist eine Art virtuelle IP-Adresse, die einem Kubernetes-Service zugewiesen wird.
Diese IP-Adresse ist nur innerhalb des Clusters verfligbar und erméglicht anderen Pods und
Services den Zugriff auf den Service. ClusterlP ist der Standard-Servicetyp in Kubernetes.

Beispiel ClusterIP

apiVersion: v1
kind: Service
metadata:
name: test-clusterip-service
spec:
selector:
app: test-app
ports:
- name: http
port: 80
targetPort: 8080

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

NodePort

]
I
1
I
1
1
1
I
I
I
I
|
I
|
I
1
]
I
I
I
I
!

A -
I Kubernetes Cluster [

NodePort ist eine Netzwerkfunktion, die es einem Service ermdoglicht, Gber eine Portnummer
auf jedem Node im Cluster verfligbar zu sein. Der fir den NodePort verwende Port wird
automatisch aus einem Bereich zwischen 30000 bis 32767 ausgewdhlt. Wenn ein Client auf
den Service zugreifen mochte, muss er nur die IP-Adresse eines der Nodes im Cluster und den
zugewiesenen NodePort verwenden.

Beispiel NodePort

apiVersion: v1
kind: Service
metadata:
name: test-nodeport-service
spec:
selector:
app: test-app
type: NodePort
ports:
- name: http
port: 80
targetPort: 8080
nodePort: 30000

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

LoadBalancer

v

e Kubemetes Cluster

Der Service-Typ LoadBalancer bietet einem Service die Moglichkeit, Uber eine externe Load-
Balancer-IP-Adresse erreichbar zu sein. Wenn ein Client auf die Load-Balancer-IP-Adresse
zugreift, wird der Datenverkehr an den Service im Cluster weitergeleitet.

LoadBalancer wird normalerweise von einem Cloud-Anbieter bereitgestellt. Welche Load-
Balancing-Methoden (z.B. Round Robin, Least Connection, Least Bandwidth, Least Response
Time usw.) verwendet werden, hdngt von der Implementierung des Load Balancers ab. In
vielen Fallen wird Round-Robin-Load-Balancing eingesetzt.

ExternallPs

v

T Kubemetes Cluster

Wie Sie auf dem oberen Bild erkennen kdnnen, weisen die Service-Typen ExternallPs und
NodePort gewisse Ahnlichkeiten auf. ExternallPs erméglicht den Zugriff auf einen internen

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

Dienst Uber eine externe IP-Adresse, die verstandlicherweise nicht vom Kubernetes-Cluster
selbst verwaltet wird. Bei Verwendung von ExternallPs wird der Datenverkehr von den
angegebenen externen IP-Adressen direkt auf die Pods im Cluster weitergeleitet.

Diese Funktion kann nitzlich sein, wenn man einen Service fiir den Zugriff von auRen
bereitstellen mochte, ohne dabei einen LoadBalancer zu verwenden. Auch wenn bestimmte
IP-Adressen flir den Zugriff auf den Service zugelassen werden missen, kann diese Funktion
sinnvoll sein.

Beispiel ExternalName

Sie kdnnen eine oder mehrere externe IP-Adressen in der Service-Definition angeben, damit
der Service Uber diese Adressen erreichbar ist. Die IP-Adresse 10.10. 20.10 muss aul3erhalb
des Kubernetes-Clusters verwaltet werden.

apiVersion: vl
kind: Service
metadata:
name: test-externalip-service
spec:
selector:
app: my-app
ports:
- protocol: TCP
port: 80
targetPort: 8080
externallPs:
-10.10.20.10

So sieht es aus, wenn drei IP-Adressen (wie auf dem Bild) konfiguriert werden:

externallPs:
-10.10.20.10
-10.10.20.1
-10.10.20.12

NodePort vs. ExternallPs

Obwohl NodePort und ExternallPs auf den ersten Blick dhnlich erscheinen, gibt es gravierende
Unterschiede zwischen den beiden Service-Typen. Bei NodePort werden die Ports auf jedem
Knoten im Cluster automatisch von Kubernetes reserviert und verwaltet. Dabei ist keine
manuelle Konfiguration erforderlich, aber die Anzahl der verfligbaren Portbereiche fir
NodePort-Dienste ist beschrankt. Bei ExternallPs hingegen mussen eine oder mehrere externe
IP-Adressen manuell konfiguriert werden. Die Anzahl der Portbereiche ist aber nicht begrenzt.

Uberblick Giber die Architektur von Kubernetes - Anatoli Kreyman 57

ExternalName

Wie man auf dem Bild erkennen kann, leitet der ExternalName den Datenverkehr in eine
umgekehrte Richtung, namlich nach auRen. Dies macht den Service-Typ ExternalName zu
einer besondere Art von Service in Kubernetes. Der ExternalName kommt zum Einsatz, wenn
Anwendungen innerhalb des Clusters auf externe Dienste zugreifen miissen, ohne dass
IPs/Ports direkt in den Konfigurationen verwaltet werden.

Bei der Erstellung eines ExternalName werden keine Selektoren (selector) sondern externen
DNS-Namen verwendet. Wenn ein Clients (Pod/Container) innerhalb des Clusters diesen
Service ansprechen, wird der angegebene DNS-Name anstelle der Service-Adresse
zuriickgegeben.

Beispiel ExternalName

In unteren Beispiel erstellt der ExternalName-Service einen DNS-Eintrag fir test-db-
service.svc.cluster.local. Wenn irgendein Pod innerhalb des Clusters versucht, den Service
unter dieser Adresse aufzurufen, wird die Anfrage an test-db.demo.lab weitergeleitet.

apiVersion: v1
kind: Service
metadata:
name: test-db-service
spec:
type: ExternalName
externalName: test-db.demo.lab
ports:
- name: db-port
port: 3306
protocol: TCP

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

Kubernetes Storage

Zu Beginn ihrer technologischen Entwicklung waren Container ausschliefllich fur die
Bereitstellung zustandsloser Anwendungen vorgesehen. Das bedeutet, dass kurzlebige
Objekte nur in der beschreibbaren Schicht eines Containers (Pods) existieren und jedes Mal
verloren gehen, wenn ein Pod (in dem ein Container lauft) ,zerstért” und neu erzeugt wird.
Daher war es notwendig, eine Technologie zu entwickeln, die sicherstellt, dass die
Anwendungsdaten auch nach einem Recreate, oder besser gesagt, wahrend des gesamten
Lebenszyklus eines Pods, verfligbar bleiben.

Persistent
Volume Volume

Folgende Objekte helfen uns, die beschriebene Herausforderung zu meistern:

e Volume

e Persistent Volume

e Persistent Volume Claim
e Storage Class

e Access Modes

Im Laufe der Jahre wurden immer mehr stateful (zustandsbehaftet) Applikationen in
containerisierter Form bereitgestellt, besonders die Applikationen, die eine Datenbank
bendtigen.
Volumes
Wie Sie aus der vorherigen Ausfiihrung bereits entnehmen konnten, werden die Volumes nur

zum Speichern temporadrer Daten wahrend der Lebenszeit eines Pods verwendet. Wenn der
Pod geldscht wird, werden auch alle dazu zugehdrige Volumes ebenfalls geldscht.

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

Persistent Volume

Persistent Volumes

. Persistent Volume -
“ Erstellung =
Administrator

Persistent Volume Claim
ausfuhren

»

>
»
>

Persistent Volume Claim
Developer nutzen

Das Persistent Volume (PV) ist ein API-Objekt, welches den eigentlichen Speicher darstellt.
Wie der Name schon sagt, ist der Lebenszyklus eines Persistent Volumes vollig unabhangig
vom Lebenszyklus eines Pods. Ein Persistent Volume kann von einem Administrator oder
dynamisch in einem Kubernetes Cluster bereitgestellt werden. Das PV steht dem gesamten
Cluster zur Verfliigung und ist keinem Namespace zugeordnet.

Aus technischer Sicht werden die Persistent Volume Objekte im API-Server erstellt. Die
Persistent Volumes werden auf die einzelnen Worker Nodes gemappt. Das Kubelet mappt die
PVs auf die einzelnen Pods. Sobald dem Knoten Speicher zugewiesen und der Pod gestartet
wurde, wird das Persistent Volume auf den Container gemountet.

PVs kénnen entweder manuell durch einen Administrator oder dynamisch durch einen
Storage Klassen Controller bereitgestellt werden. Eine Storage-Klasse definiert eine Gruppe
von Speichertypen, die von einer dynamischen Provisionierung-Logik verwendet werden, um
PVs automatisch zu erstellen. Wenn ein Pod ein PVC anfordert und keine passenden PVs
verfligbar sind, wird automatisch ein neues PV erstellt.

Wenn man ein Persistent Volume definiert, hat man eine Wahl zwischen vielen verschiedenen
Arten von Persistent Volumes, die innerhalb von Kubernetes bereitgestellt werden kdnnen.
Dies ist von der angeschlossenen Storage-Infrastruktur abhangig und lasst sich grob in vier
Typen aufteilen: Local-, Netzwerk-, Block- und Cloud-Storage.

e Local Disk

e Netzwerk: NFS, azureFlle

e Block: Fibre Channel, iSCSI

e Cloud: z.B. awsElasticBlockStore, azureDisk, gcePersistentDisk

Die Art des verwendeten Storage ist von der Use Case und / oder Infrastruktur abhangig.

Hier finden Sie eine vollstandige Liste: https://kubernetes.io/docs/concepts/storage/persistent-
volumes/#types-of-persistent-volumes

Uberblick Giber die Architektur von Kubernetes - Anatoli Kreyman 60

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes

Persistent Volume Claim

Der Persistent Volume Claim (PVC) ist eine Anforderung des Benutzers an den Cluster, ihm
eine bestimmte Menge an Speicherplatz zu gewahren.

Wenn ein Persistent Volume Claim gestellt wird, miissen dabei eine Reihe von Eigenschaften
definiert werden: die GroRe des PersistentVolumes, den Zugriffsmodus (Access Mode) fir
dieses PersistentVolumes, die Speicherklasse (Storage Class) usw. Der Zugriffsmodus
definiert, wie das Volume genutzt werden kann.

Wenn ein geeignetes Persistent Volume gefunden wird, das den gestellten Anforderungen
entspricht, wird es an den PVC gebunden (Bindung) und bereitgestellt. Wenn kein passendes
PV vorhanden, kann in Systemen mit dynamischer Provisionierung (s. unten) automatisch ein
neues PV erzeugt werden, das den Anforderungen aus dem PVC entspricht.

PVC-Beispiel

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: mein-pvc
namespace: mein-namespace
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 10Gi
storageClassName: meine-speicherklasse

Access Modes

‘rRom| [Rwor |

06000

R-N-1-

Persistent Volumes

0 O:

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

Persistent Volumes und Persistent Volume Claims stehen vier verschiedenen Zugriffsmodi zur
Verfligung:

e RWO - ReadWriteOnce bedeutet, dass ein Node das Volume sowohl fiir den Lese-
als auch fir den Schreib-Zugriff mounten kann.

e RWX — ReadWriteMany bedeutet, dass mehr als ein Node das Volume fiir den
Lese-Schreib-Zugriff mounten kann.

e ROM - ReadOnlyMany bedeutet, dass mehr als ein Node das Volume fir den
reinen Lesezugriff mounten kann.

e RWOP — ReadWriteOncePod bedeutet, dass ein Volume nur von einem einzelnen
Pod im gesamten Cluster mit Lese-Schreib-Zugriff gemountet werden kann. Die
Option ist nur ab Version 1.22 und nur fir PVC verfligbar.

Es ist zu beachten, dass die zugrundeliegende Speicherkomponente immer noch ihre eigenen
Eigenschaften haben kann, die im Widerspruch zu den konfigurierten Einstellungen stehen
kdnnen.

Static Provisioning

Bei der statischen Bereitstellung wird das Persistent Volume durch einen Administrator vorab
erstellt. Dabei legt der Administrator die Spezifikationen (Zugriffsmodi, Grofe, Name usw.)
fest.

Dynamic Provisioning

Bei einer dynamischen Bereitstellung das Persistent Volume zeitgleich mit der Erstellung von
PVC angelegt. Dies passiert in der Regel, wenn die verfligbaren statischen PVs nicht mit der
PVC-Spezifikation Ubereinstimmen. In diesem Fall basiert die Bereitstellung anhand von
vordefinierten Storage Klassen.

Storage Class

Das Objekt Storage Class bietet die Moglichkeit bestimmte Eigenschaft wie z.B. Leistung,
GrolRe oder Zugriffsart, sowie die infrastrukturspezifischen Parameter zu definieren. Innerhalb
des StorageClass werden auch die Schritte definiert (reclaim policy) was mit einem dynamisch
zugewiesenen PersistentVolumes geschehen soll, sobald die PVC geldscht ist.

Storage Lifecycle

| Binding >| Using >| Reclaiming >

e Delete

Den gesamten Lebenszyklus der PVs/PVCs konnen wir in drei Phasen aufteilen: Binding, Using
und Reclaim. Hier ist eine grobe Beschreibung der einzelnen Schritte.

Provisioning - die erste Phase ist bereits oben erklart und beinhaltet eine statische oder eine
dynamische Provisionierung.

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

Binding - ist ein Prozess der Zuordnung eines PersistentVolumeClaim zu einem
PersistentVolume flr den weiteren Zugriff von einem Pod. Aus technischer Sicht passiert
Folgendes: wenn der PersistentVolumeClaim erstellt wird, findet ein Control Loop diesen
PersistentVolumeClaim und versucht, ein passendes PersistentVolume zu finden. Dies kann
entweder statisch oder dynamisch passieren. Wenn der Control Loop kein PersistentVolume
finden kann, bleibt der Pod, welcher diesen PersistentVolumeClaim verwenden wollte, in dem
Pending-Zustand, und zwar so lange bis die passende Ressource verfligbar wird.

Using - Das Volume steht dem Pod wahrend seiner Lebensdauer zur Verfligung.

Reclaiming - in dieser Phase wird festgelegt, was mit dem Volume geschehen soll. Sie haben
eine Wahl zwischen zwei moglichen Optionen Retain und Delete.

Retain - dem zugrundeliegenden Storage wird mitteilt, dass der Volume noch manuell
zurlickgefordert werden kann.

Delete - die Phase ist selbst erklarend. Diese Option wird Gberwiegend in dynamischen
Provisioning Szenarien verwendet.

Autoscaling
Was ist Skalierung?

Unter Skalierung versteht man im Allgemeinen die VergroRerung oder Verkleinerung
vorhandener Ressourcen.

Es gibt zwei Arten der Skalierung:

Vertikale Skalierung (Scaling up) - die vertikale Skalierung wird durch das Hinzufligen
zusatzlicher Hardware-Ressourcen erreicht. Wie im unteren Bild dargestellt, wurde der
vorhandene Server mit mehr CPU und RAM ausgestattet. Auf diese Weise kénnen sowohl
physische als auch virtuelle Ressourcen erweitert werden.

Vertikale Skalierung

ESXi Host ESXi Host
E i [E=A EER [E53) () Faa]
EEyE=g

Was ist Kubernetes Autoscaling?

Kubernetes Autoscaling ermoglicht eine dynamische Anpassung an steigenden oder
sinkenden Ressourcenbedarf durch horizontale und vertikale Skalierung der einzelnen
Ressourcen.

Im Gegensatz zum ,Legacy” Scaling orientiert sich Kubernetes Autoscaling nicht an der
Skalierung von physischen oder virtuellen Maschinen, sondern muss eine andere

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

Abstraktionsebene bedienen. Beim Kubernetes Autoscaling liegt der Fokus auf den
Applikationen und den architekturbedingt darunter liegenden Pods.

Da die Kubernetes-Infrastruktur hauptsachlich in der Cloud eingesetzt wird, hilft Kubernetes
Autoscaling bei der Kostenoptimierung, indem ein Cluster dynamisch nach oben und unten
skaliert wird, je nach aktuellem Bedarf.

Autoscaling-Funktionen fir Kubernetes
In Kubernetes gibt es drei Autoscaling-Funktionen.

e Vertical Pod Autoscaler (VPA) - erhoht oder reduziert CPU- und Speicher-
Ressourcen in Pod

e Horizontal Pod Autoscaler (HPA) - fliigt neue Pods hinzu oder entfernt diese

e Cluster Autoscaler - kann Clusterknoten hinzufiigen oder entfernen

Vertical Pod Autoscaler (VPA)

Vertical Pod Autoscaler (VPA)

% o)
51 B

-l soo
LELIL 2semi)

p vy

Wie bereits erwahnt, basiert VPA auf dem gleichen Prinzip wie die ,klassische” vertikale
Skalierung, d.h. das Hinzufligen oder Entfernen von Ressourcen (z.B. CPU oder Speicher) zu
oder von einem Pod. Man kénnte VPA als eine Weiterentwicklung der in Kubernetes tblichen
Requests und Limits (s. unten) betrachten, allerdings mit einem wesentlichen Unterschied: Die
Requests werden automatisch auf Basis einer Verhaltensbeobachtung (ca. 5 Minuten) und
einer anschlieBenden Bewertung aktualisiert.

Firr die ,technische” Umsetzung ist ein Kubernetes-Objekt namens
VerticalPodAutoscaler zustandig, zu dem noch drei Komponenten gehoren:

Der Recommender ist die zentrale Komponente des VPA. Der Recommender dient zur
Uberwachung des historischen und aktuellen Ressourcenverbrauchs und zur Berechnung der
daraus resultierenden CPU- und Speicheranforderungen.

Link: https://github.com/kubernetes/autoscaler/blob/master/vertical-pod-
autoscaler/pkg/recommender/

Der Updater ist fur die Umsetzung der vom Recommender berechneten Empfehlungen
verantwortlich. Der Updater erstellt neue Pods und beendet Pods, die aktualisiert werden
miussen. Die eigentliche Aktualisierung wird jedoch vom Vertical Pod Autoscaler Admission
Plugin durchgefihrt.

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

https://github.com/kubernetes/autoscaler/blob/master/vertical-pod-autoscaler/pkg/recommender/
https://github.com/kubernetes/autoscaler/blob/master/vertical-pod-autoscaler/pkg/recommender/

Horizontal Pod Autoscaler (HPA)

Horizontal Pod Autoscaler (HPA)

O 000

i e e e
ELLIN omi ETEI covi WEEEIN covi NMEETIN comi

A

Wie auf dem Bild zu sehen ist, unterscheidet sich HPA von VPA durch die Erhéhung oder
Reduzierung der Pod-Anzahl und nicht durch die Anpassung deren Eigenschaften.

HPA ist wesentlich flexibler als VPA, da durch das Hinzufligen / Entfernen von Pods eine
kosteneffiziente und performante Umgebung gebaut werden kann. Ein weiterer, eher
hypothetischer Vorteil ist die Moglichkeit, die Performance-Engpéasse im Bereichen Storage
/O und Netzwerk abzufedern. Wobei die Entscheidung weiteren Pods zu starten, wird
ausschlieRlich auf Basis von CPU- und Arbeitsspeicher-Metriken getroffen. Die realen
Engpasse bei IOPS, Netzwerk und Storage werden nicht beriicksichtigt.

Einzige Voraussetzung fiir den Einsatz von HPA ist, dass die verwendeten Applikationen unter
Berlicksichtigung der horizontalen Skalierung entwickelt wurden und die parallele Ausfiihrung
mehrerer Instanzen unterstitzen.

HPA Komponenten
Bei dem Aufbau vom HPA werden mehreren Komponenten zum Einsatz kommen: HPA,
cAdvisor, Metrics API, APl Service und Mertics Server.

Auf jedem Node ist eine Komponente namens cAdvisor eingebaut (als Teil von kubelet) und
dient zur Uberwachung der Ressourcenauslastung der laufenden Container. cAdvisor sammelt
mehrere interne Metriken in einem Node, die aber von keinem Tool genutzt werden.

Link: https://github.com/google/cadvisor

Die vom cAdvisor gesammelten Metriken werden von einem weiteren Tool namens Mertics
Server aggregiert. Der Metrics Server wird Uber die Metrics APIfir HPA und VPA zur
Verwendung bereitgestellt.

Link: https://github.com/kubernetes/metrics

Der Metrics Server ist eine separate Komponente und wird bei der Cluster-Installation nicht
mitinstalliert. Fir die Installation missen einige Voraussetzungen erfillt sein. Der Metrics
Server lauft als Pod im Kubernetes-Cluster und sammelt in regelmalRigen Abstdnden
(standardmaRig 60 Sekunden) die Metriken (CPU und Speicher) der Nodes. Die gesammelten
Metriken werden nicht aufbewahrt und sind zur sofortigen Verwendung bestimmt.

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

https://github.com/google/cadvisor
https://github.com/kubernetes/metrics

Link: https://github.com/kubernetes-sigs/metrics-server

HPA-Versionen

Es gibt zwei HPA-Versionen: vl und v2. Die erste HPA-Version (autoscaling/v1) hat eine sehr
begrenzte Konfigurationsmoglichkeit und ist ausschlieflich auf der durchschnittlichen CPU-
Auslastung basiert.

Die zweite Version (autoscaling/V2betal und autoscaling/V2beta2) unterstitzt die
Verwendung von mehreren Metriken. Diese Metriken kénnen auch vom Benutzer definiert
oder aus externen Quellen stammen.

Cluster Autoscaler

Cluster Autoscaler

1000
1000

mzr)

1000

Cluster Autoscaler ermoglicht die automatische Skalierung des Clusters selbst, indem die
Anzahl der Knoten erhoht oder verringert wird.

Es kann die Situation eintreten, dass trotz dynamischer Ressourcenverteilung alle
zugewiesenen Ressourcen erschopft sind und keine weiteren Pods auf den vorhandenen
Worker Nodes gestartet werden konnen. In diesem Fall gibt es nur eine Moglichkeit,
bestehende Engpasse zu beseitigen: die Anzahl der Worker Nodes zu erhéhen.

Im Gegensatz zu den beiden anderen Skalierungsmethoden (VPA/HPA) ist der Cluster
Autoscaler kein Bestandteil des Kubernetes Clusters, da Kubernetes keine Mechanismen fir
das automatische Anlegen und Entfernen von virtuellen Maschinen besitzt. Der Cluster
Autoscaler ist eine ,typische” Komponente von Managed Kubernetes bei Cloud Providern.

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

https://github.com/kubernetes-sigs/metrics-server

Requests und Limits

Die Requests / Limits sind optionale Konfigurationsmaoglichkeiten, die zur Optimierung der
Ressourcennutzung verwendet werden kénnen. Requests / Limits missen nicht konfiguriert
werden. Je nach Anwendung oder Situation kdnnen die Requests / Limits die Stabilitat der
einen oder anderen Anwendung positiv oder negativ beeinflussen. Diese Einstellung ist als
zweischneidiges Schwert zu betrachten.

Requests

Die Requests dienen zwei Zwecken, erstens einen geeigneten Knoten mit ausreichender
Kapazitat zu finden und zweitens die Gesamtmenge der bendétigten Ressourcen zu berechnen.

Die Requests definieren die minimale Menge an RAM/CPU, die fiir den Container benétigt
wird. Wie bereits erwahnt, entscheidet der Kube Scheduler anhand dieser Informationen, auf
welchem Worker Node der Pod gestartet werden soll und reserviert die angeforderte Menge
an Ressourcen fiir diesen Container, so dass diese garantiert zur Verfiigung stehen.

Wenn auf keinem einzigen Worker Node die verlangten Ressourcen vorhanden sind, wird der
Pod erstmal in einen Pending-Zustand versetzt. Erst wenn die angefragten Ressourcen wieder
vorhanden sind, wird der Pod ausgefiihrt.

Limits

Die Limits sorgen dafiir, dass der Container seinen CPU- oder RAM-Verbrauch in Grenzen halt
und keine zuséatzlichen Ressourcen als vordefiniert, fiir sich beansprucht, auch wenn solche
Ressourcen physikalisch vorhanden sind.

Wenn die Ressource die durch die Limits festgelegte Grenze erreicht, werden bestimmte
Ereignisse ausgeldst, die unterschiedliche Auswirkungen auf die CPU und den Speicher haben.
CPU-Throttling und Out-of-Memory-Kills sind die bekanntesten.

Hier ein kurzes Beispiel dafiir, wie Sie Requests und Limits fiir eine Container-Spezifikation
festlegen kénnen:

apiVersion: v1
kind: Pod
metadata:

name: busybox-app

spec:

containers:

- name: busybox
image: busybox
resources:

requests:
memory: "128Mi"
cpu: "250m"
limits:

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

memory: "256Mi"
cpu: "500m"

Einheiten

Die CPU-Anforderungen werden in Millicores (auch milliCPU genannt) (,m“) oder in Cores
festgelegt, wobei 1000 Millicores = 1 vCPU oder 1 physische CPU Core entspricht. Der
minimale Wert betrdgt 0.1 Core.

250m auf dem oberen Bespiel bedeutet, dass die % einer CPU aufgefordert wurde und die
Limitierung auf 500m gesetzt ist.

Die Memory-Anforderungen werden in Bytes gemessen. Fir die Eingabe der Speicher-
Ressourcen konnen unterschiedlichen Suffixe (einstellige und zweistellige) verwendet werden
(z.B. Mi bedeutend Mebibyte und entspricht 1,04858 MB, oder 128 MebiByte ist gleich zu 135
Megabyte (MB)).

CPU-Throttling

CPU-Throttling bedeutet, dass die CPU-Nutzung eines Containers gedrosselt wird, wenn er
sein CPU-Limit Uberschreitet. Das CPU-Throttling wird durch sogenannte "Throttling-
Perioden" geregelt. Die "Throttling-Periode" ist ein Mechanismus zur Uberpriifung der CPU-
Nutzung des Containers in regelmaBigen Abstanden (standardmaRig 100ms). Aus technischer
Sicht sind die cgroups (Linux-Funktionen) die CPU-Drosselung zustandig.

Wenn z.B. ein Container ein Limit von "500m" hat, was 50% eines CPU-Kerns entspricht. Das
bedeutet, dass dieser Container in jeder Throttling-Periode (100ms) bis zu 50ms CPU-Zeit
verbrauchen (ebenfalls 50%) darf. Hatte ein Container ein Limit von "300m" (30% eines CPU-
Kerns), so hatte er Anspruch auf 30ms CPU-Zeit.

1 2 3

1:""":F . - CPU
= I = Request: 250m Limit: 500m Throttled

1. Fur einen Container reservierter CPU-Anteil.
2. Maximale CPU-Auslastung fiir den Container.
3. Grenzwert, bei dem das CPU-Throttling beginnt.

Die potentiellen Probleme des CPU-Throttling lassen sich anhand des folgenden Beispiels noch
besser verdeutlichen:

Eine Funktion einer Applikation bendtigt normalerweise 80ms CPU-Zeit, um ihre Tasks
abzuschlieRen.

e CPU-Limit: 500m
e Throttling-Periode: 100ms

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

e Verfligbare CPU-Zeit pro Periode: 50ms (50%)

Ohne CPU-Limit hatte der Container die 80ms CPU-Zeit-Aufgabe direkt abgearbeitet.
Andernfalls werden die CPU-Limits wie folgt auswirken:

e Erste Periode (100ms): 50ms Arbeitszeit und wird dann gedrosselt.
e Zweite Periode (ndchste 100ms): die restlichen 30ms werden abgearbeitet.

Die CPU-Limits kdnnen zu LeistungseinbuBen und langeren Antwortzeiten der Anwendung
flihren. Je mehr Iterationen eine Anwendung benoétigt, desto schlechter sind die Performance-
Werte. Dabei spielt es keine Rolle, ob die CPU des Nodes grundsatzlich ausgelastet ist oder
nicht.

Out-Of-Memory (OOM)

Wenn ein Container mehr Speicher (RAM) anfordert, als ihm durch Limit zur Verfligung steht,
wird er durch den OOM-Killer beendet und neu gestartet. Solche unerwarteten Neustarts
kénnen zu Instabilitdt und Datenverlust der Anwendung flhren.

¥ v e

Request: 128 Mi Limit: 256 Mi ‘I Q OOM Killed

1. Maximale Menge an Memory, die fiir den Container reserviert ist
2. Maximaler Memory-Verbrauch fir den
3. Out-of-Memory greift ein und startet den Pod

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

Resource Quotas

Die Verwendung von Resource Quotas bietet die Moglichkeit, die Nutzung der CPU- und
Speicher-Ressourcen auf Namespace-Ebene einzuschranken. Diese Technologie (Kubernetes
Objekt: ResourceQuota) ist fiir den UseCase vorgesehen, wenn unterschiedlichen Teams einen
Kubernetes Cluster teilen. So wird die angemessene Verteilung ermoglicht. Grundsatzlich
kdnnen Sie mit Resource Quotas auch die Nutzung den anderen Objekten verwenden. Dies
wird aber in diesem Betrag nicht behandelt.

Hier ist ein Bespiel der ResourceQuotas- Konfiguration, welche fiir jeden Namespace erstellt
werden muss:

apiVersion: v1
kind: ResourceQuota
metadata:
name: team-aljpha
spec:
hard:
requests.cou. 2
requests.memory: 2Gi
limits.cpu. 4
limits.memory: 4Gi
requests.cpu. 2 -
requests.memory: 2Gi
limits.cou: 4
limits.memory: 4Gi

64 GB RAM
requests.cpu: 4 requests.cpu: 2 requests.cpu: 2
requests.memory: 16Gi requests.memory: 8Gi requests.memory: 8Gi
limits.cpu: 8 limits .cpu: 4 limits.cpu: 4
limits .memory: 32Gi limits .memory: 16Gi limits.memory: 16Gi

requests.cpu / requests.memory - die Summe aller CPU- / Sprecher-Anforderungen darf nicht
hoher sein als der hier definierte Wert.

limits.cpu / limits.memory - die hier eingegebene Grenzwerte diirfen nicht Gberschritten
werden.

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

https://www.kreyman.de/images/Tanzu/CPU-Sizing/Kubernetes_Resource_Quotas.png

Falls die Gesamtkapazitat eines Clusters kleiner ist als die Summe aller Kontingente der
Namespaces, kann es zu Ressourcenkonflikten kommen, die nach Prinzip ,First Come First
Serve” gel6st werden.

Die Verwendung von ResourceQuota kann sowohl gemeinsam mit den Requests/Limits auf der
Pod-Ebene als auch separat genutzt werden.

Quality of Service (QoS)

In Kubernetes gibt es drei Arten von Quality of Service (QoS) Klassen fiir Pods, die einen
direkten Bezug zu unserem Thema haben.

e Guaranteed
e Burstable
e BestEffort

Die Zuordnung der Pods zu einer oder anderen QoS-Klasse wird durch die definierten Requests
und Limits sowohl fiir die CPUs als auch flr den Speicher bestimmt.

Guaranteed

Die Zuordnung zu dieser Klasse erfolgt nur, wenn fiir jeden Container sowohl Requests als
auch Limits fur CPU/Speicher konfiguriert sind. Die Werte der Requests miissen mit den Limits
Ubereinstimmen. Wenn dies der Fall ist, wird diesen Pods die hochste Prioritat bei der
Ressourcenzuteilung garantiert.

Burstable

Zu dieser Klasse gehoren Pods, bei denen mindestens ein Container ungleiche Request oder
Limits fur CPU/Speicher hat, oder bei denen Request, aber keine Limits gesetzt sind. CPU
Throttling kann fiir Container mit einem definierten Limit angewendet werden. Diese Pods
haben eine mittlere Prioritat und konnen zusatzliche Ressourcen nutzen, aber nur wenn diese
verfligbar sind.

BestEffort
BestEffort ist das rechtlose Mitglied der QoS-Klassen. Pods, flir die weder Requests noch Limits
(fir CPU und Speicher) definiert sind, werden der Klasse BestEffort zugeordnet. Diese Pods

haben die niedrigste Prioritdt und werden CPU-maRig als die letzten bedient und sind die
ersten Kandidaten, die vom OOM Killer des Betriebssystems beendet werden.

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

https://kubernetes.io/docs/concepts/workloads/pods/pod-qos/#guaranteed
https://kubernetes.io/docs/concepts/workloads/pods/pod-qos/#burstable
https://kubernetes.io/docs/concepts/workloads/pods/pod-qos/#besteffort

Secrets

Kubernetes Secrets ist eine Ressource in Kubernetes, die dient zur Speicherung von
vertraulichen Informationen wie Passwortern, Schliisseln und Zertifikaten verwendet wird.
Secrets kdnnen von Pods, Containern oder anderen Kubernetes-Objekten wie Deployments
und Services verwendet werden, ohne dass die vertraulichen Informationen direkt im YAML-
Manifest gespeichert werden miissen.

Die Verschliisselung der Kubernetes Secrets erfolgt intern in Kubernetes und bendtigt keine
externe Komponente. Die Secrets werden standardmaRig in base64 kodiert (s. Base64
Sicherheitsbedenken), was jedoch keine Verschlisselung darstellt, sondern nur eine einfache
Kodierung. Die Kubernetes Secrets werden im etcd-Cluster gespeichert und vom API-Server
verwaltet.

Secrets kdnnen in Pods Gber Umgebungsvariablen oder Volumes gemountet werden. Wenn
Secrets als Umgebungsvariablen verwendet werden, werden die vertraulichen Informationen
in Umgebungsvariablen im Pod ausgefuihrt. Wenn Secrets als Volumes verwendet werden,
werden die vertraulichen Informationen in einer Datei gespeichert, die im Pod als Volumes
gemountet ist.

Secrets konnen auch mit Labels und Annotations versehen werden, um eine einfache Suche
und Organisation zu ermoglichen. Secrets kdnnen auch aktualisiert und geléscht werden, um
sicherzustellen, dass vertrauliche Informationen auf dem neuesten Stand und sicher bleiben.

Offizielle Dokumentation: Secrets | Kubernetes

Arten von Secrets

Es gibt zwei Arten von Secrets in Kubernetes: generische Secrets und Secrets fir Image-
Repositories (Container-Registry). Generische Secrets werden fir allgemeine vertrauliche
Informationen wie Passworter und Schliissel verwendet, wahrend Secrets fiir Image-
Repositories verwendet werden, um Anmeldeinformationen fiir die Verbindung zu einer
Container-Registry zu speichern. In diesem Fall werden Secrets verwendet, um den
Benutzername und Passwort oder Token in einem Kubernetes-Cluster zu speichern, damit
Pods oder Deployments auf das private Repository zugreifen kdnnen.

Speicherung der Secrets

Folgende Moglichkeiten konnen verwendet werden, um eine sichere Speicherung der Secrets
zu gewahrleisten:

Secret Encryption Config

In diesem Fall werden die Secrets mit einem symmetrischen Schliissel verschliisselt, der in

einem separaten Secret gespeichert wird. Dies erhdht die Sicherheit, da der Schliissel selbst
verschlisselt ist und nur von autorisierten Benutzern entschlisselt werden kann.

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

https://kubernetes.io/docs/concepts/configuration/secret/

Verwendung von Secrets-Management-Tools

Durch die Verwendung von Vault kénnen Kubernetes-Cluster einheitliche Methoden zur
Verwaltung von Secrets implementieren und die Sicherheit von Secrets erhéhen. Wenn von
Vault die Rede ist, ist eigentlich HashiCorp Vault gemeint.

HashiCorp Vault ist eine zentrale Plattform zur Verwaltung von Secrets, wie z.B. Passwortern,
API-Schlisseln, Tokens und Zertifikate, sowie zur sicheren Generierung von Zufallszahlen und
-werten.

Die Secrets werden in Vault in sogenannten "Secret Engines" gespeichert, die je nach Bedarf
konfiguriert werden kdnnen. Beispielsweise kann ein Secret Engine fiir Passworter und ein
anderer fir Tokens erstellt werden. Fir jede Art von Secret gibt es einen eindeutigen Pfad,
unter dem die Secrets innerhalb des Secret Engines abgelegt werden.

Baseb4 Sicherheitsbedenken

Die Base64-Kodierung ist ein Verfahren zur Kodierung von Binardaten in Textdaten und
umgekehrt. Die Codierung ist keine Verschliisselung und kann relativ einfach riickgéngig
gemacht werden. Das bedeutet, dass jemand, der Zugriff auf die Secret-Datei hat, die Base64-
kodierten Informationen ohne viel Aufwand entschlisseln kann. Es ist daher wichtig, sensible
Informationen wie Passworter und Zugangsdaten in Kubernetes Secrets durch
Verschllsselung zu schiitzen, bevor sie gespeichert oder ibertragen werden.

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

https://www.vaultproject.io/

KCNA — Priifung

Die KCNA (Kubernetes and Cloud Native Associate) Prifung ist eine
Zertifizierung, die von der Linux Foundation angeboten wird. Es werden
Grundkenntnisse der Kubernetes-Technologie und der Kubernetes-Cluster-
Architektur abgefragt.

N\

kubernetes

/

CLOUD NATIVE

N\

Inhalt der Zertifizierung (offizielle Information)
e Die Zertifizierung bestéatigt konzeptionelles Wissen tber das gesamte Cloud-Native-
Okosystem, insbesondere tiber Kubernetes.

e Sie bereitet Kandidaten darauf vor, mit Cloud-Native-Technologien zu arbeiten und
weitere CNCF-Zertifizierungen wie CKA, CKAD und CKS anzustreben.

Kompetenzbereiche (offizielle Information)

e Kubernetes-Grundlagen (46%): Ressourcen, Architektur, API, Container, Scheduling.

e Container-Orchestrierung (22%): Grundlagen, Laufzeit, Sicherheit, Netzwerk, Service
Mesh, Speicher.

e Cloud-Native-Architektur (16%): Autoscaling, Serverless, Community und
Governance.

e Cloud-Native-Beobachtbarkeit (8%): Telemetrie, Observability, Prometheus,
Kostenmanagement.

e Cloud-Native-Anwendungsbereitstellung (8%): Grundlagen, GitOps, CI/CD.

Prifungsdetails

e Es gibt keine spezifischen Voraussetzungen

e Die Prufungist ein online GUberwachtes, Multiple-Choice-Examen.
e Die Zertifizierung ist drei Jahre giltig

e Die Prifungsdauer betragt 90 Minuten

e Der Preis fir die Prifung betragt 250 USD

Offizielle Information:

https://training.linuxfoundation.org/certification/kubernetes-cloud-native-associate/

https://docs.linuxfoundation.org/tc-docs/certification/frequently-asked-questions-kcna

Uberblick iiber die Architektur von Kubernetes - Anatoli Kreyman

https://training.linuxfoundation.org/certification/kubernetes-cloud-native-associate/
https://docs.linuxfoundation.org/tc-docs/certification/frequently-asked-questions-kcna

	Einführung
	Bildnachweise:
	Hinweis / Disclaimer
	Was ist Kubernetes?
	VM vs. Container oder OS Isolierung vs. Applikation Isolierung
	Microservices
	Verwendungsszenarien
	Einsatzszenarien

	Kubernetes Vorteile
	Flexibilität
	Skalierbarkeit / Effizienz
	Ausfallsicherheit
	Deklarative Konfiguration
	Self-Healing
	Ökosystems

	Kubernetes Nachteile
	Kosten und Komplexität
	Nicht immer sinnvoll

	Kubernetes-Architektur Diagramm
	Control Plane
	Kubernetes API-Server
	ETCD
	kube-controller-manager
	kube-scheduler

	Worker Nodes
	kubelet
	Kube-proxy
	IP-Tables-Modus
	IPVS-Modus
	iptables-Modus

	Im iptables-Modus programmiert Kube-Proxy iptables-Regeln auf jedem Node, um den Netzwerkverkehr von Services zu den zugehörigen Endpunkten (Pods) weiterzuleiten. Dabei werden die von Kubernetes verwalteten Endpoints bzw. Endpoint Slices verwendet, um...
	Container Runtime

	API Server
	RESTful API
	kubectl api-resources

	Authentifizierung, Autorisierung, Validierung und Zulassung
	Authentifizierung
	Autorisierung
	Validierung
	Zulassung

	Informationsaustausch mit ETCD
	Lesen von Daten
	Schreiben von Daten
	Beobachten von Änderungen

	Skalierbarkeit, Erweiterbarkeit, Versionskontrolle
	Skalierbarkeit
	Erweiterbarkeit
	Versionskontrolle

	API Objects
	API Groups
	Core-API-Groups
	Named API-Groups
	API Resource Location – Beispiele

	API Versioning
	Alpha
	Beta
	Stable

	HTTP-Antwortcodes vom API-Server

	Namespaces
	Isolierung
	Ressourcenverwaltung
	Zugriffssteuerung
	Namenstrennung
	Vordefinierten Namespaces

	Labels
	Beispiel eines Kubernetes Labels:

	Annotations
	Beispiel einer Kubernetes Annotations:
	Labels vs. Annotations

	Workload-Objekte
	ReplicaSet
	Deployment
	RollingUpdate – Parameter
	kubectl Befehle für das Deployment

	DaemonSet
	StatefulSet
	Headless Service

	Jobs
	CronJobs
	Healthcheck-Objekte
	Liveness Probe
	Readiness Probe
	Startup Probe

	Taints und Tolerations
	Taints und Tolerations - technische Umsetzung
	Taint-Optionen
	Typische Anwendungsfälle

	NodeSelector
	Node Affinity
	Pod Affinity / Pod Anti-Affinity
	Pod Affinity
	Pod Anti-Affinity

	Kubernetes Netzwerk
	CNI-Plugin
	Service-Discovery
	Network-Policies
	Pod-to-Pod-Kommunikation
	Netzwerk-Arten im Kubernetes Cluster
	Node Network
	Pod Network / Cluster Network
	Service Network

	Kubernetes Ingress
	Name-based Virtual Hosts
	Path-based Routing
	TLS Termination
	Service API vs. Ingress
	Open Source Ingress Controller
	Ingress Beispiel

	Kubernetes Egress
	Egress Beispiel

	Kubernetes DNS
	Kubernetes CoreDNS
	Kubernetes Netzwerk-Plugins / Container Networking Interface (CNI)

	Service-Typen
	ClusterIP
	Beispiel ClusterIP

	NodePort
	Beispiel NodePort

	LoadBalancer
	ExternalIPs
	Beispiel ExternalName
	NodePort vs. ExternalIPs

	ExternalName
	Beispiel ExternalName

	Kubernetes Storage
	Vol​umes
	Persistent Volume
	Persistent Volume Claim
	PVC-Beispiel

	Access Modes​
	Static Provisioning
	Dynamic Provisioning
	Storage Class
	Storage Lifecycle

	Autoscaling
	Was ist Skalierung?
	Was ist Kubernetes Autoscaling?
	Autoscaling-Funktionen für Kubernetes
	Vertical Pod Autoscaler (VPA)​
	Horizontal Pod Autoscaler (HPA)
	HPA Komponenten
	HPA-Versionen

	Cluster Autoscaler
	Requests und Limits
	Requests
	Limits
	Einheiten

	CPU-Throttling
	Out-Of-Memory (OOM)

	Resource Quotas
	Quality of Service (QoS)
	Guaranteed
	Burstable
	BestEffort

	Secrets
	Arten von Secrets
	Speicherung der Secrets
	Secret Encryption Config
	Verwendung von Secrets-Management-Tools

	Base64 Sicherheitsbedenken

	KCNA – Prüfung
	Inhalt der Zertifizierung (offizielle Information)
	Kompetenzbereiche (offizielle Information)
	Prüfungsdetails

